
CS 499 (Fall 2006)- Assignment 5

Due: Thursday, 10/05/2006

(1) Write a program that serves as a combined spell-checker and text formatter. Here is what it should
do: it gets a piece of text (say, from a file). It first spell-checks it, using a dictionary you provide as a
file. All words not in the dictionary should be automatically replaced with the closest match from your
dictionary, using the edit distance discussed in class (you can break ties for closest match any way you
want). You do not need to have a full table for different penalties for different character overwrites
(as discussed in class), but you should allow reasonably easy adjustments to the relative penalties of
overwrites, deletes, and inserts.

After “correcting” the spelling, the program should format the resulting text to fit in c columns as
neatly as possible. c can be a command-line parameter, or read in some other natural way. “As neatly
as possible” means that the row lengths are roughly balanced. Specifically, if the number of trailing
whitespaces in line i is ti for each i, then you incur a penalty of

∑
i t2i . For instance, if you want to

format “Algorithms are way cool” to 14 columns, you could do either of the following:

Algorithms are
way cool

Algorithms
are way cool

The first incurs a penalty of 02 + 62 = 36, while the second has penalty 42 + 22 = 20. So the second
one is a better way of displaying this text.

You are supposed to find the best output with respect to this measure, and write it to a new file. Of
course, if a single word doesn’t fit into c characters, there is nothing you can do, so you will always
have to put it on a line by itself. You cannot break a word across lines.

Your program should be able to deal at least with some minimal amount of punctuation, and it should
respect paragraphs. If two paragraphs are separated by an empty line, then they should still be
separated by an empty line after your re-formatting.

Here are some hints:

1. The first part requires getting your hands on a dictionary, i.e., a list of words. It doesn’t really
matter where you get it, or what it contains. You probably don’t want a full dictionary of all
English words, or your program may be a bit slow. Feel free to reduce the size, e.g., by random
sampling. Also, you will probably have a lot more fun with your “spell-checked” output if your
dictionary is missing many words.

2. The second part is probably as substantial as the first. In particular, it does require dynamic pro-
gramming to do optimally. Notice for instance in the simple example given above that squeezing
as much as possible into each line need not be optimal.

3. There are many ways to improve this program beyond what is specified. As discussed in class,
having different penalties for different replacements (or perhaps even different deletions or inserts),
or adding character swaps, makes the spell-checking better. If you have enough free time on your
hands, you are welcome to implement them for your own fun, but it will not affect your grade.

(2) Let us look now at some ways we could improve the two parts we discussed above:

1. We already discussed in class different replacement costs, pairwise swaps, etc. What other ways
do you see to improve a spell checker? For instance, is there a way to get a spell checker to
perform better if it is always used by the same user? How? What ways would help in general?

1



2. The proposed approach does a decent job of ensuring that rows are all “roughly equally full”.
Perhaps, some function other than

∑
i t2i would do an even better job, but that’s not so much

our concern here. Of course, having all rows roughly equally full may not really be the best way
to make the text look nice or be readable. Think of some ways to improve upon the algorithm.
What rules would you recommend for making text layout more reader-friendly? Discuss how
easily your rules would combine with your solution to the problem, i.e., how easily you think they
could actually be implemented.

2


