
CS 670 (Spring 2025) — Assignment 4

Due: 04/09/2022

(1) [10 points]

You are given a directed graph G with non-negative edge costs ce, and a root node r ∈ V , as well as a set

X ⊆ V of target nodes. The goal is to find a set F of edges of minimum total cost, such that F contains a

directed path from r to each node v ∈ X . (Let’s say that at least one such path always exists.)

Phrase this problem as a decision problem and prove that it is NP-complete.

(2) [10 points]

Problem 8.39 from the textbook.

(Hint: I would recommend 3SAT. The reduction is not super easy — the most similar you have seen so far

in class would be 3DM, though reading the textbook section on HAMILTONIAN PATH/CYCLE could also be

helpful.)

(3) [4+5+3=12 points]

We said in class that Integer Linear Programming (ILP) is very powerful, and can easily encode lots of NP-hard

problems. Here, you will explore this for VERTEX COVER.

(a) Write the MINIMUM VERTEX COVER problem as an ILP. That is, for any given MINIMUM VERTEX

COVER input (graph G), produce an ILP whose optimal solution encodes a minimum vertex cover. Notice

that implicitly, your reduction thus shows that ILP is NP-hard, but you don’t need to explicitly phrase it as

a Karp Reduction.

(b) Now get rid of the integrality constraint to obtain the fractional version of MINIMUM VERTEX COVER.

Compute the dual linear program of this fractional LP. Then, add an integrality constraint to the dual LP,

and come up with an interpretation of the resulting dual ILP. That is, what problem does the ILP encode?

(Notice that this is similar to what we did for the dual of MAXIMUM FLOW, where the dual with an

integrality constraint naturally encoded MINIMUM CUT.)

(c) Combining the “obvious” inequalities between integer and fractional LPs with weak duality, what inequal-

ity involving vertex cover sizes have you derived? Now that you have seen this inequality, find a simple

“direct” proof (without LP duality).

(4) [5+10=15 points]

In class, we saw the fractional linear program for MINIMUM s-t CUT. Here it is again:

Minimize
∑

e∈E xe · ce
subject to

∑
e∈P xe ≥ 1 for all s-t paths P

xe ≥ 0 for all edges e.

In the integer program, all the xe are restricted to be 0 or 1. In the fractional version, they may take values in

between. (In an optimum solution, they will never be larger than 1.) Here, you will explore some interesting

properties of this Linear Program.

(a) First, observe that the LP has exponentially many constraints. In class, we mentioned that some LPs

with exponentially many constraints can nonetheless be solved in polynomial time, if you can provide

polynomial-time Membership and Separation Oracles. Recall that a Membership Oracle is an algorithm

which, given a proposed solution x = (xe)e∈E , will always correctly tell you whether x satisfies all

constraints of the LP or not. A Separation Oracle will give you one violated constraint if there exists one.

For the specific LP above (the Minimum s-t cut LP), give polynomial-time Membership and Separation

Oracles, and brief correctness proofs and runtime analysis.
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(b) We also mentioned in class that this LP happens to always have integer optimal solutions; that is, while

there may be optimal non-integer solutions as well, there will always be at least one optimal solution in

which all xe are integers. While this follows using the more general “hammer” of total unimodularity, you

will prove it directly in this problem.

Prove that the Minimum-Cut LP always has an integer optimal solution.

(Hint: Interpret the xe values as edge lengths. Then, for each node v, you can assign (and compute) a

distance d(s, v) from s. Prove that there must be a value r (which you can find in polynomial time) such

that the cut separating {v | d(s, v) ≤ r} from {v | d(s, v) > r} is an s-t cut and has cost no more than the

fractional LP-solution you started with.)

(5) [0 points]

Chocolate Problem (1 chocolate bar): Let’s return to the toll road question from Homework 2. At the time, all

drivers were going to the same final destination. That is of course very unrealistic. Here, we consider the more

realistic version where different drivers have different destinations. Here, is a formal description again.

You have m ramps to get on/off your toll road, numbered 1, 2, . . . ,m. This divides your toll road into segments

Tj = [j, j + 1). You are given a list of n drivers. For each driver i, you are told the starting and ending ramp of

their trip si < ti, as well as a budget bi. To drive from si to ti, the driver has to drive along all the intermediate

segments Tsi , Tsi+1, . . . , Tti−1.

You get to choose a price for each segment Tj . If the sum of prices on the trip is affordable to the driver (at

most bi), then they will drive on your toll road and pay you the total for the segments. If the sum exceeds bi,

driver i will take surface streets for the entire trip, and not pay you anything. Your goal is to choose prices for

the segments that maximize your revenue from the drivers under this model.

Phrase this problem as a decision problem, and prove that it is NP-complete.
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