
CS 671 (Fall 2020) Final Exam (Takehome) — Due 12/02/2020,
5:00pm, by e-mail to David

This exam is takehome, but apart from having more time and getting to work on it wherever
you want, you should treat it exactly like an open-book in-class exam. Specifically, here are

the key rules. (If in doubt, check with the instructor.)

(a) You may access the textbook, anything I handed out or posted for this class (assignments,
sample solutions, whiteboards, lecture videos), and anything you wrote for this class (class
notes, homework solutions). You may not access any other books, any online resources
(not even Wikipedia), notes taken by classmates or friends, etc.

(b) You may not communicate about this exam with anyone except the instructor. Not
with classmates, labmates, friends from undergraduate, or anyone else. Not even basic
questions — you should communicate exactly as if you were sitting in an in-class exam,
i.e., not at all.

(c) The exam is due Wednesday, 12/02/2020, no later than 5:00pm, as a PDF by e-mail to
David. Late submissions will not be accepted.

G o o d L u c k

(1) In class, we used a coupling argument to prove that the random walk on the d-dimensional hypercube
mixes in time O(d log d). Reprove that the random walk mixes rapidly using the technique of canonical
paths.

[Note: Probably, the bound you will obtain on the time it takes to be nearly mixed will be worse than
the one we obtained using coupling. So long as it is polynomial in d, that is not a problem.]

(2) In class, we talked about sampling colorings of graphs by using a Markov Chain. Another natural type
of object to sample is independent sets1. Sampling a uniformly random independent set is going to be
hard, because the large independent sets could be very far and few between. Instead, we will aim to
sample independent sets from a distribution that prefers small independent sets (which are also easier
to find). Specifically, for a parameter λ ∈ (0, 1), we will want to sample the independent set S with
probability proportional to λ|S|. Specifically, we will do this only for λ ≤ 1

∆ , where ∆ is the maximum
degree of the graph G.

We do the sampling with the following Markov Chain: starting from an arbitrary independent set S
(the empty set is a natural candidate), we repeatedly perform the following step:

� With probability λ
1+λ , try to add a vertex. To do so, pick a uniformly random vertex v. If v ∈ S

already, or adding v would be illegal, then do nothing. Otherwise, add v to S.

� With the remaining probability 1
1+λ , try to remove a vertex. Again, pick a uniformly random

vertex v. If v /∈ S, then do nothing; otherwise, remove v from S.

(a) Prove that under the stationary probability distribution of this Markov Chain, the chain is at
each set S with probability proportional to λ|S|. (To prove this, it is enough to substitute these
values and prove that they are stationary.)

1Remember: A vertex set S is independent if no two nodes in it are adjacent.
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(b) Use a coupling argument to prove that for λ ≤ 1
∆ , this chain mixes rapidly. (If you prefer, you

can use another type of proof — but coupling is likely easiest.) As a hint, you may want to first
think about coupling two independent sets S, S′ differing in exactly one node, i.e., S′ = S ∪ {v}
for some vertex v. If you cannot quite get the proof to work with λ ≤ 1

∆ , you will get most credit
for making it work with λ ≤ 1

∆+1 .

[Note: This is probably the hardest question on this exam.]

(3) The Bin Packing problem is defined as follows: you are given n items, with the size of item i being
si ∈ (0, 1), a fractional number between 0 and 1. You are given a supply of bins, each of size exactly
1. You want to pack all the items in bins, and minimize the number of bins. That is, the objective
function is the number of bins used to pack all items. Of course, a bin may be filled only partially, but
you cannot overfill any bin. This problem is known to be NP-complete.

(a) Give and analyze a simple deterministic algorithm using at most 2OPT + 1 bins, where OPT is
the optimum number of bins to use.

(b) We now improve the approximation guarantee to (1 + 2/e)OPT + 1, by using LP-rounding. We
say that an n-dimensional 0-1 vector a is feasible if the items i with ai = 1 can all fit into one bin,
i.e.,

∑
i aisi ≤ 1. Let a1, . . . , am be all feasible 0-1 vectors. Notice that m will be exponentially

large in n. We can now write the following IP for Bin Packing:

Minimize
∑
j xj

subject to
∑
j a

j
ixj ≥ 1 for all i

xj ∈ {0, 1} for all j.

Of course, we can turn this into an LP in the usual way. The meaning of the variable xj is that if

xj = 1, then the set of items with aji = 1 is put into a bin together.

While this LP has exponential size, and is thus not obviously solved, you get to assume that you have
a fractional optimum solution xj . In fact, you get to assume that the solution only has polynomially
many xj entries which are non-zero, and you are given this list of non-zero entries explicitly. So you
don’t have to deal with exponentially many variables any more.

Show how to use this solution in order to obtain a solution using at most (1 + 2/e)OPT + 1 bins in
expectation.

[Hint: you may want to use your solution to part (a).]

(4) Sometimes, randomized algorithms are really good at saving space. Imagine the following scenario:
you have a sequence of m items, each from a universe U of size n. Items may repeat, possibly many
times, and you want to know how even or uneven the distribution is. Specifically, if item i appears
a total of xi times in the sequence, you want to know the variance

∑
i(xi −m/n)2 =

∑
i x

2
i −m2/n.

Since m,n are easy to keep track of, this is equivalent to calculating
∑
i x

2
i .

Now, this would be a very easy problem if you could simply count how many times you have seen each
element i. Unfortunately, you don’t have enough space for n separate counters. You only want to keep
track of one number instead. One way to accomplish this — surprisingly — is as follows: for each i,
generate a number ξi, which is ±1 with probability 1/2 each, such that the ξi are pairwise independent.
Start out with a counter Y = 0. Now, whenever you see another occurrence of element i, add ξi to Y ,
i.e., increment or decrement Y , according to the element i.

(a) Prove that E
[
Y 2
]

=
∑
i x

2
i .

(b) The previous part shows that in expectation, this method lets you calculate
∑
i x

2
i . Unfortunately,

the variance of Y 2 is quite high. To do better, we can run in parallel k independent copies of this
algorithm, with independent random choices ξi,j . Call the resulting counters Y1, . . . , Yk. Then,
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we instead keep track of Z := 1
k ·
∑k
j=1 Y

2
j . Bound the probability that Z deviates from

∑
i x

2
i by

more than a (1± δ) factor, in terms of δ and k.

(c) We motivated this problem by “saving space”, yet then, we went ahead and stored n pairwise
independent random bits ξi. That pretty much defeats the purpose. Show how to use O(log n)
mutually independent random bits to generate n pairwise independent random bits. (Thus, all
you really need to store are those O(log n) bits.)

[Note: You can also get the guarantees from Part (b) with O(k log n) bits of storage, but that
requires techniques that we haven’t covered in this class, so you don’t need to do that.]

[Hint: The textbook discusses some techniques for generating pairwise independent random num-
bers from given numbers. I strongly recommend reading that section before attempting this
question, but mostly for general intuition — the techniques will likely not be directly applicable
here.]
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