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We study a Bayesian multi-armed bandit (MAB) setting in which a principal seeks to maximize the sum of
expected time-discounted rewards obtained by pulling arms, when the arms are actually pulled by selfish
and myopic individuals. Since such individuals pull the arm with highest expected posterior reward (i.e.,
they always exploit and never explore), the principal must incentivize them to explore by offering suitable
payments. Among others, this setting models crowdsourced information discovery and funding agencies
incentivizing scientists to perform high-risk, high-reward research.

We explore the tradeoff between the principal’s total expected time-discounted incentive payments, and
the total time-discounted rewards realized. Specifically, with a time-discount factor γ ∈ (0, 1), let OPT
denote the total expected time-discounted reward achievable by a principal who pulls arms directly in a MAB
problem, without having to incentivize selfish agents. We call a pair (ρ, b) ∈ [0, 1]2 consisting of a reward ρ

and payment b achievable if for every MAB instance, using expected time-discounted payments of at most
b ·OPT, the principal can guarantee an expected time-discounted reward of at least ρ ·OPT. Our main result
is an essentially complete characterization of achievable (payment, reward) pairs: if

√
b+

√
1− ρ >

√
γ, then

(ρ, b) is achievable, and if
√
b+

√
1− ρ <

√
γ, then (ρ, b) is not achievable.

In proving this characterization, we analyze so-called time-expanded policies, which in each step let the
agents choose myopically with some probability p, and incentivize them to choose “optimally” with probabil-
ity 1− p. The analysis of time-expanded policies leads to a question that may be of independent interest: If
the same MAB instance (without selfish agents) is considered under two different time-discount rates γ > η,
how small can the ratio of OPTη to OPTγ be? We give a complete answer to this question, showing that

OPTη ≥ (1−γ)2

(1−η)2
·OPTγ , and that this bound is tight.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics
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1. INTRODUCTION

An important recent theme in the development of on-line social systems is the poten-
tial of crowdsourced effort to solve large problems — defining tasks in which many
people can each contribute a small amount of time to the overall goal. In some cases,
such as jobs on Amazon Mechanical Turk and similar crowdsourced work platforms,
the arrangement is based on a direct compensation scheme, in which a (low) rate is
paid for each unit of work performed. But in many settings, and in a large range of
emerging applications, one only has access to a crowd “in the wild,” as they go about
their everyday activities.

Many of these unstructured crowdwork settings have the following basic structure:
the designer of the system wants the members of the crowd to “explore” a space of
options and learn from their observations and reactions; but each member of the crowd
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individually wants to focus on the “good” options rather than directly helping in this
exploration process. This trade-off comes up in different guises across a surprisingly
wide range of domains.

Crowdsourced information discovery. Social news readers or similar sites, which
promote stories or pages of interest to their readers, typically rely on readers them-
selves to discover and share interesting stories, and to rate stories of which they are
aware. While individuals may a priori prefer to read stories that have already been
rated highly by many others, to discover new material they should be incentivized
to explore stories with few reviews.
Product Ratings. Customers of online retailers rely heavily on other customers’ re-
views in their choice of products. The retailer would like to see the customers con-
verge to the best product, but individuals who buy and review only one product
have an incentive to be myopic about their purchase. The retailer can implement
incentives directly with discounts.
Citizen science. Scientific organizations such as Galaxy Zoo for astronomy and
eBird for Ornithology try to synthesize the activities of a large group of enthusi-
asts to make scientific observations at a collective scale [Lintott et al. 2008; Shel-
don et al. 2007]. This involves guiding the enthusiasts toward relatively unexplored
parts of the domain (e.g., either in the night sky or a natural bird habitat), whereas
each individual enthusiast would rather focus on the areas where the star-gazing
or bird-watching appears to be the best [Xue et al. 2013].
Funding of research efforts. Viewed in this context, government funding of scien-
tific research has a similar structure. While funding agencies such as NSF, NIH,
or DARPA, functioning as arms of the government, may be able to define overall
research agendas, the actual research is carried out by individual research groups.
Since most groups typically pursue short-term rewards and projects that are very
likely to succeed, funding agencies may wish to use grants to incentivize high-risk
high-reward research efforts with potential for large gains in overall welfare.

In all of these domains, there is a fundamental incentive problem: the designer’s
goal is to carry out exploration (of the space of news stories, products, bird habitats,
or scientific research questions) as efficiently as possible, but for reasons of scale, they
cannot perform this exploration on their own. Rather, they must implement the explo-
ration via a crowd composed of members who each derive their own, different utility
from participating in the exploration. The designer’s goal, at a high level, is to incen-
tivize exploration in a way that increases overall welfare as much as possible, while
simultaneously minimizing the amount of incentive transfer made to the crowd.

Perhaps the most natural framework for modeling this incentive problem is via the
multi-armed bandit (MAB) problem, where it leads to a basic variant of the question
that has received surprisingly little study. In typical MAB settings, multiple actions
with unknown payoff distributions present themselves to a decision maker, who strives
to choose a sequence of actions to maximize his total payoff over time. This entails
repeatedly deciding between taking a sure payoff versus exploring higher-risk/higher-
reward actions which might have higher long-term benefits.

We consider a variant of the MAB in which the principal (the crowdsourcing web-
site, retailer, or citizen science organization) cannot choose directly which actions to
pursue, and instead must rely on a stream of selfish and myopic agents. Without in-
centives, these agents will act myopically, failing to explore actions that might lead to
large long-term rewards. To steer their efforts in a direction more fruitful for overall
welfare, the principal can offer monetary (or other) rewards if they choose particular
actions (pages or products to rate, or regions of the night sky to observe). In choos-



ing an incentive structure, the principal must trade rewards and knowledge gained
through exploration, against payments made to incentivize this exploration.

Here we give an informal overview of this model, and present it formally in Section 2.
The model is based on the standard time-discounted infinite time-horizon Bayesian
MAB model [Robbins 1952], and includes a finite set of arms i. Each arm has an as-
sociated payoff distribution, which is unknown to the algorithm, and drawn indepen-
dently from a known distribution over distributions.1 When an algorithm plays arm i
at time t, it receives a random reward rt,i, and may also use the observed reward to
update its posterior belief about the arm’s reward distribution. An algorithm chooses
an arm to play for each discrete time step t = 0, 1, 2, . . ., making adaptive choices based
on observed payoffs. Time is discounted exponentially with a time discount factor γ;
thus, when playing arm it at time t, the algorithm obtains expected reward γtE [rt,it ],
where the expectation is taken over all sources of randomness (including the history-
dependent choice of it). The total time-discounted reward of an algorithm A for the
principal is then

∑∞
t=0 γ

t
E [Rt,it ].

When interacting with selfish and myopic agents, the algorithm can offer them pay-
ments for playing certain arms, which may also depend on the history of observed
rewards. A selfish and myopic agent chooses the arm maximizing the sum of the of-
fered arm-specific payment and the expected posterior reward of the arm itself. This
models a scenario in which the agents obtain the full reward from their action, receive
the payment, and then do not return. Note that we assume that both the principal and
the agent receive the full reward of each arm that is pulled.

It is instructive to consider two extreme policies with respect to payments. At one
extreme is the MYOPIC policy that never offers payments to agents. Then, the agents
always myopically choose the arm maximizing the expected reward conditioned on the
observed history. It is well known that such myopic exploitation-only policies can be
far from optimal in terms of total time-discounted reward. At the other extreme is the
PAY-WHAT-IT-TAKES policy that always offers a payment large enough to induce the
agents to follow the optimal policy (which is the Gittins index policy [Gittins and Jones
1974]). Such a policy is obtained by offering, in each round, a payment for playing the
arm that would be played by the incentive-free optimal policy; this payment equals the
difference of conditional expectations between the arm maximizing expected posterior
reward and the arm chosen by the optimal policy. This policy would achieve optimal
expected rewards, but at a possibly exorbitant price.

The goal of the present work is to characterize the tradeoff between the algorithm’s
payments and the total reward that can be achieved. Let OPT denote the expected to-
tal time-discounted reward of the optimum algorithm which does not have to interact
with selfish agents. We call a point (ρ, b) ∈ [0, 1]2 achievable at discount rate γ if for
every MAB instance with non-negative rewards, there exists an adaptive policy satis-
fying the following: (1) Its expected time-discounted reward is at least ρ · OPT. (2) Its
expected time-discounted payment to agents is at most b · OPT. The main technical
result of the paper is the following essentially complete characterization of achievable
points.

THEOREM 1.1. Let (ρ, b) be a point in [0, 1]2.

(1) If
√
b+

√
1− ρ <

√
γ, then (ρ, b) is not achievable.

(2) If
√
b+

√
1− ρ >

√
γ, then (ρ, b) is achievable.

Figure 1 illustrates the achievable points.

1In fact, we consider a more general model, in which each arm follows an independent Markov chain. But
for concreteness, in this section, we will describe the results for the simpler model.
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Fig. 1. The achievable region of reward-payment tradeoffs with γ = 0.9 (shown shaded)

The proof of Theorem 1.1 proceeds as follows: We first consider a Lagrangian relax-
ation of the problem of maximizing the total expected reward subject to a constraint
on the total expected payment. In the Lagrangian relaxation, the budget constraint is
removed, but the objective function is modified to incorporate a term that penalizes
the expected (time-discounted) payments made to agents. The resulting optimization
problem can be approached with a policy that independently randomizes between the
MYOPIC and PAY-WHAT-IT-TAKES policy in each round. By randomizing between these
two policies with appropriate probabilities, we can ensure that the cost of the payments
offered when playing PAY-WHAT-IT-TAKES is exactly canceled by the surplus payoff re-
ceived when playing MYOPIC. We leverage this cancellation to show that the expected
reward of our randomized policy equals the reward of the optimum policy for the same
MAB instance, but with a steeper time discount η < γ. We then prove the following
general theorem, comparing the rewards of policies on the same MAB instance, with
different discounts.

THEOREM 1.2. Consider a fixed MAB instance (without selfish agents) with two dif-
ferent time discount factors η < γ, and let OPTη,OPTγ be the optimum time-discounted

rewards achievable under these discounts. Then, OPTη ≥ (1−γ)2

(1−η)2 ·OPTγ , and this bound

is tight.

Theorem 1.2 may be of independent interest, since it characterizes the maximum
rate at which an optimal policy may lose rewards as they are discounted more steeply;
in particular, it shows that the reward decreases gracefully with the discount factor.
Theorem 1.2 is proved by analyzing an algorithm which follows the optimum policy
at rate γ, but randomly selects a set of arms to “censor,” so that pulling these arms is
counted as a no-op instead.

As a final step in the analysis, we show that by appropriately randomizing between
two different policies, each of which randomizes between the myopic and an optimal
policy in each step, we can come arbitrarily close to a factor 1 − (

√
γ −

√
b)2 of the

optimum policy while heeding the budget constraint.



Related Work

The Bayesian MAB problem was introduced by Robbins [1952], and studied by a great
number of authors as a model for the tradeoff between exploration and exploitation. A
major breakthrough came with the work of Gittins [Gittins and Jones 1974], who gave
a tractable method for computing the optimal policy. The MAB problem has also been
studied extensively in the stochastic non-Bayesian [Lai and Robbins 1985] and adver-
sarial [Auer et al. 1995, 2003] settings. For an overview, see the survey article [Ma-
hajan and Teneketzis 2007] or the monograph [Gittins et al. 2011]. Almost all of the
previous work on multi-armed bandits focuses on the single-agent problem, in which
the principal directly controls the arms pulled without needing incentive payments.

A similar motivation to ours was considered in [Kremer et al. 2013]. Their goal is
also to incentivize selfish agents who arrive one by one to explore different options.
The difference between our mechanism design problem and the one in [Kremer et al.
2013] is as follows: in the model of [Kremer et al. 2013], only the principal observes
the outcomes of prior agents’ actions, whereas the other agents are not privy to this
information. The principal does not offer the agents rewards; instead, he can strategi-
cally decide which outcomes to reveal in order to incentivize exploration. In this sense,
the model of [Kremer et al. 2013] applies naturally to recommendation systems such
as traffic-based driving recommendations. The precise models are sufficiently different
that a technical comparison of results is not useful.

The goal of learning in MAB settings with a budget has been pursued in a series of
recent papers (e.g., [Goel et al. 2009; Guha and Munagala 2007, 2009, 2013]). Guha
and Munagala [2007] introduced the problem and gave an LP-based approximation;
Goel et al. [2009] gave a much simpler index-based algorithm for this problem. In
these papers, the costs are not dependent on the observed history, so the techniques
do not appear to carry over to our setting, although our work and the work of Guha
and Munagala [2007, 2009, 2013] share the theme of using Lagrangian relaxation to
reduce a budget-constrained learning problem to an unconstrained problem with a
mixed-sign objective accounting for a linear combination of payoffs and costs.

Learning with selfish agents has been considered in several papers, e.g., [Bolton and
Harris 1999; Keller et al. 2005]. Traditionally, the focus is on the information sharing
aspect: agents can strategically choose whether to pull arms, but learn from all other
agents’ pulls as well, which leads to an analysis of the extent of free-riding.

A different strategic MAB setting was considered by Bergemann and Välimäki
[Bergemann and Välimäki 1996] and work extending their model. Here, the arms
themselves can set strategic prices for being pulled: this models a setting in which
firms can set prices for products that users want to try. The strategic considerations
that arise are sufficiently different from those in our work for the technical results to
be incomparable.

Several recent papers (e.g., [Abraham et al. 2013; Badanidiyuru et al. 2012, 2013; Ho
et al. 2013; Singla and Krause 2013]) have drawn a connection between MAB models
and crowd-sourcing of tasks. Contrary to our model, these papers typically treat the
agents as arms in the MAB instance, i.e., the algorithm’s goal is to learn the quality
of the agents’ work from observing them while providing enough incentives for them
to work. Thus, despite a general interest in the same problem domain, the specific
technical approaches are very different.

2. DEFINITIONS AND PRELIMINARIES

We consider a collection of k arms, and time indexed by t = 0, 1, . . .. Each arm has asso-
ciated with it an independent Markov chain (with possibly infinitely many states). Let
St,i denote the state of the Markov chain for arm i at time t. St,i is perfectly observable



by the principal and all selfish agents. In the standard MAB setting, an algorithm (or
policy) decides, for each time t, which of k arms to pull. At time t, if arm i is pulled,
it generates a reward whose distribution depends only on i’s current state St,i; arm i
then advances to a new state St+1,i according to its Markov chain’s known transition
kernel. If arm i is not pulled, then St+1,i = St,i.

Let rt,i denote the random reward that would have been generated by pulling arm i
at time t. We assume that the reward sequence generated by this Markov chain is non-
negative, and that the Markov chain has an optimal policy for each discount factor;
this issue is discussed more below. Also, we consider only the case that the reward
sequence forms a Martingale, in the following sense:

E [E [rt+1,i | St+1,i] | St,i] = E [rt,i | St,i] .

An important and well-studied special case captures all of the motivating examples
discussed in Section 1, and is the model we outlined there as well. Each arm i has asso-
ciated with it some latent random variable θi, drawn independently at random from a
known Bayesian prior probability distribution over a space Θi. This θi determines the
payoff distribution Γi = Γi(θi) for arm i. Conditioned on θi, the rewards from arm i are
i.i.d. from Γi. This scenario is a special case of the Markovian framework, as follows:
the state space of the Markov chain for arm i is the set of all finite sequences of rewards
that can be generated from arm i’s distribution. The reward distribution conditioned
on St,i is then the Bayesian posterior distribution of arm i’s payoff conditioned on the
observed history of rewards. The law of iterated conditional expectations can be used
to show that the reward sequence obtained from such a Markov chain is a Martingale.

The algorithm’s choice will be based on the current state of all arms. Let St = (St,i)i
be the vector containing the current state for each arm. An algorithm is then precisely
a (distribution over) mappings from a time t and state St to arms it to pull next. We
allow the mapping to be randomized, but to avoid excessive notation, we will typically
describe an algorithm as a function A : (t,St) 7→ it, and simply lump in the algorithm’s
randomness with the various other sources of randomness.

In the model with selfish agents studied in this work, the algorithm (which guides
the principal’s actions) cannot directly pull an arm, and instead must incentivize self-
ish agents to pull the arms. At each time t = 0, 1, . . ., a selfish agent arrives and chooses
an arm it to pull, based on the arm’s expected reward and the incentive payments of-
fered by this algorithm. When the arm is pulled, the principal and the current agent
(but not other agents) are rewarded with Rt = rt,it . While only the principal and the
current agent actually earn the reward, the principal and all agents observe the cur-
rent state of each arm’s Markov chain; in the learning case, all agents observe each
reward’s value, from which each arm’s current state is determined. Thus, all agents
and the principal’s algorithm have the same information St at any time t.

Based on the current state St, at time t, the principal’s algorithm determines pay-
ments ct,i ≥ 0 to offer the agent for playing the different arms i. The agent then chooses
the arm i maximizing

E [rt,i | St] + ct,i. (1)

Because the algorithm can evaluate Expression (1), we can assume w.l.o.g. that the
algorithm chooses ct,i = 0 for all but at most one arm. Since the algorithm’s goal in-
cludes minimizing payments, we can describe the algorithm equivalently by specifying
the (random) sequence (it)t of arms to pull. To achieve this sequence, the algorithm
must offer a payment

ct := ct,it = max
i

E [rt,i | St]− E [rt,it | St] , (2)



which captures the minimum payment to give the desired arm the same expected re-
ward in the eyes of the agent as the arm with highest posterior expected reward. Thus,
in summary, even when interacting with selfish agents, an algorithm can be consid-
ered as a (possibly randomized) mapping A : (t,St) 7→ it, with the understanding that
this sequence determines payments made from the algorithm to the agents.

To indicate the expectation taken under algorithm A, we use the notation EA [·].
When the algorithm is clear from the context, we simply write E [·]. The algorithm’s
payoffs and payments are discounted by a factor γ ∈ (0, 1). Thus, the expected total
discounted sum of payoffs of a given algorithm A is

R(γ)(A) = EA

[

∞
∑

t=0

γtRt

]

, (3)

and the expected total discounted payment is

C(γ)(A) = EA

[

∞
∑

t=0

γtct

]

. (4)

We assume that for each discount factor γ ∈ [0, 1], the MAB instance possesses an opti-
mal policy, i.e., one that attains the supremum supAR

(η)(A). We also assume that this
supremum is finite. A sufficient condition for this assumption is that the state space of
each Markov chain is countable, and the rewards rt,i are bounded above [Dynkin and
Yushkevich 1979]. For other sufficient conditions, see [Dynkin and Yushkevich 1979].

The classical literature on Bayesian MABs [Gittins 1989] has considered the single-
agent problem of finding a policy maximizing the expected discounted sum of payoffs,
E [

∑∞
t=0 γ

tRt], disregarding any incentive payments. An optimal policy for this problem
was discovered in [Gittins and Jones 1974], and consists of computing at each time t
the Gittins index associated with the current state of each arm’s Markov chain, and
pulling the arm for which this Gittins index is the highest, breaking ties arbitrarily.2

We let OPTγ denote both this optimal Gittins index policy and the expected dis-
counted sum of payoffs that it receives.

3. MAIN RESULT AND PROOF

Recall that our main goal is to characterize, for every γ, the achievable pairs (ρ, b) at
discount rate γ, i.e., the pairs such that for each MAB instance with discount rate γ,
an algorithm A using payments C(γ)(A) ≤ b ·OPTγ , can obtain total reward R(γ)(A) ≥
ρ ·OPTγ . The characterization is given by Theorem 1.1, restated here for convenience:

Theorem 1.1 Let (ρ, b) be a point in [0, 1]2.

(1) If
√
b+

√
1− ρ <

√
γ, then (ρ, b) is not achievable.

(2) If
√
b+

√
1− ρ >

√
γ, then (ρ, b) is achievable.

PROOF. To prove the first part, we present in Section 7 a family of instances we
term Diamonds in the Rough. In those instances, one arm has known constant payoff.
All remaining arms have payoffs of the following form: they are either a very large
constant (with some small probability), or the constant 0. We call such arms collapsing

2While computing the Gittins index is computationally demanding, requiring, e.g., the solution of a sequence
of dynamic programs [Whittle 1980], it can be computed using information about only a single arm, unlike
the dynamic program for the full MAB MDP, which scales exponentially in the number of arms. Other algo-
rithms for efficient computation of the Gittins index have been proposed in [Varaiya et al. 1985; Katehakis
and Veinott 1987], and computation methods are surveyed in [Mahajan and Teneketzis 2007].



arms. The parameters are chosen such that myopic agents always choose the arm with
constant payoff. With the right choice of parameters, the optimum policy is to explore
collapsing arms until one with large constant payoff is found; subsequently, that arm
is pulled forever. In Section 7, we show the following lemma, which implies the upper
bound on the rewards:

LEMMA 3.1. For any b ≤ γ, there is a choice of arm payoffs and probabilities such
that the optimum policy without selfish agents obtains payoff arbitrarily close to 1,
yet any policy incurring a total expected payment of at most b obtains reward at most

1− (
√
γ −

√
b)2.

For the second part, we fix γ and a MAB instance, and study the optimization prob-
lem of maximizing R(γ)(A), subject to the constraint that C(γ)(A) ≤ b. We show a lower
bound on R(γ)(A). We begin by studying the Lagrangian relaxation for some λ ∈ [0, 1],
i.e., maximizing

R
(γ)
λ (A) = R(γ)(A)− λ · C(γ)(A).

To achieve good bounds on the Lagrangian relaxation R
(γ)
λ (A), we consider random-

izations between time-expanded versions of policies. Specifically, let A be a stationary
non-randomized policy. Informally, the time-expanded version of A with parameter
p ∈ [0, 1] is the following policy: at each time t, with probability p, offer no incentives
(thus making agent t choose a myopically optimal arm), and with probability 1 − p,
offer the reward necessary to make the agent play the arm that A would choose based
on only the “amount of information” A has acquired without the myopic pulls before
time t. Make these choices independently for each time step.

A formal definition requires additional notation. Let Xi,t = 1[it 6=i] be an indicator
random variable that is 1 if A pulled arm i in round t, and 0 otherwise. Let τi,ℓ =
min{t | ∑t′≤tXi,t′ ≥ ℓ} be the time when A pulled arm i for the ℓth time. (If arm i is

pulled fewer than ℓ times total, then τi,ℓ = ∞; we will ensure that we reference this
definition only for values ℓ such that the arm has been pulled at least ℓ times.) For a
vector ℓ = (ℓ1, ℓ2, . . . , ℓk), we define the ℓ-pull state S(ℓ) to be the state when each arm
i has been pulled ℓi times. That is, S(ℓ) = (Sτi,ℓi ,i)i.

Let Z = (Z0, Z1, Z2, . . .) be a sequence of independent Bernoulli(1 − p) random
variables, and Z0:t = (Z0, Z1, . . . , Zt). When Zt = 1, the time-expanded version of
A will follow A, and when Zt = 0, it will have the agent behave myopically. Let

NZ0:T

i,T =
∑T
t=0Xi,tZt be the number of time steps t up to and including time T at

which the algorithm pulled arm i and Zt = 1, and N
Z0:T

T = (NZ0:T

i,T )i the vector of all

of these numbers of time steps. If T = −1, then NZ0:T

i,T = 0. The Z-induced state up to

time T is ŜT (Z0:T ) = S(NZ0:T

T ). In words, the Z-induced state is obtained as follows:

for each arm i, count the number NZ0:T

i,T of times it was pulled when Zt = 1. Then, keep

the state that results from the first NZ0:T

i,T pulls of arm i, for each arm i, even if they

occurred at times when Zt = 0.
Now, we can define the time-expanded version TEp,A of A with parameter p:

TEp,A(t) =

{

A(Ŝt−1(Z0:t−1)), if Zt = 1,

argmaxi E [rt,i | St] , if Zt = 0.

Notice the following:

(1) The choice of whether to follow a myopic policy or the policy A is determined by Zt.



(2) In evaluating the choice of the policy A, the time-expanded algorithm does not con-
sider everything it has learned. For each arm, it considers only the “amount” of
information it could have learned at time steps that were not myopic pulls. How-
ever, the actual information may be obtained at time steps when myopic pulls were
made.

(3) To determine the payments to offer when incentivizing the agents to play according
to A, the time-expanded policy does take all past outcomes into account, so that the
payments are based on the same information used by the agents to evaluate the
arms.

The main result about the time-expanded policy, which is proved in Section 4, is
summarized in the following lemma:

LEMMA 3.2. Given a parameter λ, define p = λ
λ+1 , and η = (1−p)γ

1−pγ . Then,

R
(γ)
λ (TEp,A) =

1− η

1− γ
·R(η)(A).

In words, the Lagrangian payoff of the time-expanded policy is equal to the payoff
of A in the absence of selfish agents, but with a different time-discount factor η, and
multiplied by a factor depending on the two discount factors, γ and η. In particular, we
will later apply this lemma to optimal policies OPTη for suitable choices of η.

The next step is to relate the time-discounted payoffs of the optimal policies OPTγ ,
OPTη, for different time discounts γ, η. This is accomplished via Theorem 1.2; we
restate it here and prove it in Section 5.

Theorem 1.2 Consider a fixed MAB instance (without selfish agents), with two differ-
ent time discount factors η < γ, and let OPTη,OPTγ be the optimum time-discounted

rewards achievable under these discounts. Then, OPTη ≥ (1−γ)2

(1−η)2 ·OPTγ , and this bound

is tight.
Finally, in Section 6, we use the previous results to establish the existence of a

budget-bounded policy that performs well compared to the optimum; this policy is a
randomization between the time expansions of two policies OPTη,OPTη′ for suitably
chosen η, η′. This is summarized in the following lemma.

LEMMA 3.3. For every ǫ > 0 and every b, there is a p ∈ [0, 1] and a policy A satisfying

R(γ)(A) ≥
(

1− pγ +
p · b
1− p

)

·OPTγ − ǫ,

C(γ)(A) ≤ b ·OPTγ .

We bound the factor on the right-hand side of the reward bound as follows:

1− pγ +
p · b
1− p

= 1− γ + γ(1− p) +
b

1− p
− b

≥ 1− γ + 2
√

γ · b− b

= 1− (
√
γ −

√
b)2,

where the inequality in the middle is justified by comparing the arithmetic and geo-
metric means of the numbers γ(1− p) and b

1−p .

When
√
b +

√
1− ρ >

√
γ, we have ρ < 1 − (

√
γ −

√
b)2, and it is possible to choose ǫ

small enough that R(γ)(A) ≥ ρ ·OPTγ .



4. FROM INCENTIVES TO TIME-EXPANSION: PROOF OF LEMMA 3.2

In this section, we prove Lemma 3.2. Throughout, we choose p = λ
1+λ , so that λ = p

1−p .

Let A be an arbitrary stationary non-randomized policy (without selfish agents). We
begin by relating the expected Lagrangian payoff of TEp,A in some round t with the
expected (non-Lagrangian) payoff it would obtain from choosing the non-myopic action
in the same round.

LEMMA 4.1. Fix a time t, a sequence of state vectors S0:t = (S0, . . .St), and sequence

of random Bernoulli variables Z0:t−1. Let i∗ = A(Ŝt−1(Z0:t−1)) be the arm that TEp,A
would pull in round t if Zt = 1. Then,

ETEp,A
[Rt − λct | S0:t,Z0:t−1] = ETEp,A

[rt,i∗ | S0:t,Z0:t−1] . (5)

Proof. Consider the expected payoffs and incentive payments of the two actions that
could be made by TEp,A at time t, depending on the coin flip Zt. When Zt = 0, the
algorithm will choose an arm i′ ∈ argmaxi E [rt,i | S0:t,Z0:t−1], whereas when Zt = 1, the
algorithm will choose the arm i∗. Because all calculations are conditioned on S0:t,Z0:t−1

and A is non-randomized, both i′ and i∗ are completely determined by these histories.
Thus, the values of expectations we take do not depend upon the algorithm under
which they are taken; we therefore drop this dependence in the notation.

When Zt = 0, the algorithm incurs no payment and obtains reward
x := E [rt,i′ | S0:t,Z0:t−1]. When Zt = 1, the algorithm obtains reward y :=
E [rt,i∗ | S0:t,Z0:t−1], while paying the agent x− y. The expected Lagrangian payoff is

E [Rt − λct | S0:t,Z0:t−1]

= (1− p) · E [Rt − λct | S0:t,Z0:t−1, Zt = 1] + p · E [Rt − λct | S0:t,Z0:t−1, Zt = 0]

= (1− p)(y − p

1− p
(x− y)) + px

= (1− p)y − px+ py + px = y. 2

Next, we use Lemma 4.1 to relate the Lagrangian payoff of the time-expanded policy
to the payoff of the original policy at a corresponding time.

LEMMA 4.2. Assume that p < 1. Let ζt−1 =
∑

t′<t Zt′ be the total number of non-
myopic steps performed by the time-expanded algorithm prior to time t. Then, for any
0 ≤ n ≤ t,

ETEp,A
[Rt − λct | ζt−1 = n] = EA [Rn] .

PROOF. We begin with Equation (5), and condition iteratively on two random vari-
ables: first, we condition on ζt−1 = n, and subject to this, we condition on the Z-induced

state Ŝt−1(Z0:t−1). We first apply this conditioning on the left side of Equation (5), and

use the law of iterated conditional expectation, along with the fact that Ŝt−1(Z0:t−1)
and ζt−1 are measurable with respect to S0:t,Z0:t−1:

ETEp,A

[

ETEp,A
[Rt − λct | S0:t,Z0:t−1] | Ŝt−1(Z0:t−1), ζt−1 = n

]

= ETEp,A

[

Rt − λct | Ŝt−1(Z0:t−1), ζt−1 = n
]

.

Performing the same operation on the right-hand side of Equation (5) gives us that

ETEp,A

[

ETEp,A
[rt,i∗ | S0:t,Z0:t−1] | Ŝt−1(Z0:t−1), ζt−1 = n

]

= ETEp,A

[

rt,i∗ | Ŝt−1(Z0:t−1), ζt−1 = n
]

.



Let τ = inf{τ ≥ t | Zτ = 1} ≥ t ≥ n be the (random) next time that TEp,A will choose
an action according to A. Recall that the sequence of conditional expected rewards
(E [ru,i | Su,i])u=0,1,... is a Martingale. Furthermore, i∗ is measurable with respect to

Ŝt−1(Z0:t−1). Because t ≥ n, we have that ETEp,A

[

ru,i∗ | Ŝt−1(Z0:t−1), ζt−1 = n
]

is iden-

tical for all u ≥ t. Moreover, this conditional expectation does not change if we also
condition on τ = u, so

ETEp,A

[

rτ,i∗ | Ŝt−1(Z0:t−1), ζt−1 = n
]

=
∑

u≥t

Pr[τ = u] · ETEp,A

[

rτ,i∗ | Ŝt−1(Z0:t−1), ζt−1 = n, τ = u
]

= ETEp,A

[

rt,i∗ | Ŝt−1(Z0:t−1), ζt−1 = n
]

,

meaning that the expected conditional reward is the same at the random time τ as at
time t. Noting that rτ,i∗ = Rτ and combining this with the expressions above implies
that

ETEp,A

[

Rt − λct | Ŝt−1(Z0:t−1), ζt−1 = n
]

= ETEp,A

[

Rτ | Ŝt−1(Z0:t−1), ζt−1 = n
]

.

Taking the conditional expectation with respect to ζt−1 = n on both sides, and applying
again the law of iterated conditional expectation, shows that

ETEp,A
[Rt − λct | ζt−1 = n] = ETEp,A

[Rτ | ζt−1 = n] .

By definition of the time-expanded policy TEp,A, the right-hand side is equal to
EA [Rn], completing the proof.

Proof of Lemma 3.2. We write the entire time-discounted Lagrangian reward as fol-
lows:

∞
∑

t=0

γtETEp,A
[Rt − λct] =

∞
∑

t=0

∞
∑

n=0

γtETEp,A
[Rt − λct | ζt−1 = n] · Pr[ζt−1 = n]

Lemma 4.2
=

∞
∑

n=0

EA [Rn] ·
∞
∑

t=0

γt · Pr[ζt−1 = n]

=
∞
∑

n=0

EA [Rn] ·
∞
∑

t=n

γt ·
(

t

n

)

· (1− p)n · pt−n

=
∞
∑

n=0

EA [Rn] · γn(1− p)n ·
∞
∑

s=0

(

n+ s

n

)

· (γp)s

=

∞
∑

n=0

EA [Rn] · γn · (1− p)n · (1− γp)−(n+1)

=

∞
∑

n=0

EA [Rn] · 1−η
1−γ · ηn.

In the penultimate step, we used the identity
∑∞
s=0

(

n+s
n

)

xs = (1 − x)−(n+1), which is

valid for n ≥ 0 and |x| < 1. In the last step, we used the definition that η = (1−p)γ
1−γp . 2



5. THE EFFECTS OF DIFFERENT TIME DISCOUNTS: PROOF OF THEOREM 1.2

In this section, we will prove Theorem 1.2, i.e., that OPTη ≥ (1−γ)2

(1−η)2 ·OPTγ . An example

showing that the bound is tight is given in Section 7.

Proof of Theorem 1.2. Since it seems difficult to directly analyze OPTη, we instead
define a suboptimal policy RC for which we can establish the same inequality; this
naturally implies the inequality for OPTη. The policy RC is the following random cen-
sorship policy. At time zero, an independent coin is tossed for each arm i that marks i
as censored with probability 1 − q and uncensored with probability q, where q = 1−γ

1−η .

(The significance of this choice of q will become apparent later.) RC simulates the pol-
icy OPTγ , but treats the censored arms differently from the uncensored ones. When
a censored arm i is pulled in the simulation, RC simulates one state transition of the
Markov chain for arm i but does not pull any arm in reality. When an uncensored arm
i is pulled in the simulation, arm i is pulled in reality. (There is a corner case in which
all arms are censored. In that case, the RC policy pulls arm 1 forever.)

To obtain a lower bound on the expected time-discounted payoff of RC with discount
factor η, we will analyze each arm separately. Define the following random variables:

Yi = 1[arm i is uncensored]

R̂t,i = reward from tth pull of arm i in the simulation

Mt,i,j = number of times arm j is pulled before tth simulated pull of arm i.

If arm i is pulled strictly fewer than t times in the simulation, then R̂t,i = 0, and Mt,i,j

is equal to the total number of times j is pulled throughout the simulation (which could
be ∞). The discounted reward received by RC when it pulls arm i for the tth time in
the simulation is

Yi · R̂t,i · ηt−1+
∑

j 6=i YjMt,i,j . (6)

When arm i is censored, Expression (6) is correct because it equals zero, due to the fact
that Yi = 0. When arm i is uncensored, Yi = 1 and R̂t,i is the reward received from
the tth pull of the arm. The time at which the tth pull of arm i takes place (when i is
uncensored) is t− 1 +

∑

j 6=i YjMt,i,j , which explains the final term in Expression (6).

The random variables {Yi} are mutually independent. Because the random variables

R̂t,i andMt,i,j depend only on the rewards observed in the simulation, but not on which
arms are censored, they are mutually independent of the variables Yi.

Conditioning on the random variables {R̂s,i,Ms,i,j | 1 ≤ s ≤ t, 1 ≤ i, j ≤ k}, we obtain
the following conditional expectation:

E

[

Yi · R̂t,i · ηt−1+
∑

j 6=i YjMt,i,j | R̂s,i,Ms,i,j , 1 ≤ s ≤ t, 1 ≤ i, j ≤ k
]

= q · R̂t,i · ηt−1 ·
∏

j 6=i

(1− q + qηMt,i,j )). (7)

Next, we claim that our choice q = 1−γ
1−η ensures that 1 − q + qηs ≥ γs for any integer

s ≥ 0. This is clear when s = 0; for s ≥ 1, observe the following calculation:

1− q + qηs = 1−
(

1−γ
1−η

)

(1− ηs) = 1− (1− γ)(1 + η + · · ·+ ηs−1)

≥ 1− (1− γ)(1 + γ + · · ·+ γs−1) = 1− (1− γs) = γs.



Substituting this bound into the right-hand side of Equation (7) yields

E

[

Yi · R̂t,i · ηt−1+
∑

j 6=i YjMt,i,j | R̂s,i,Ms,i,j , 1 ≤ s ≤ t, 1 ≤ i, j ≤ k
]

≥ q · R̂t,i · ηt−1 ·
∏

j 6=i

γMt,i,j = qηt−1 ·
(

R̂t,iγ
∑

j 6=iMt,i,j

)

. (8)

Let at,i = E

[

R̂t,iγ
∑

j 6=iMt,i,j

]

. We have derived that the (unconditional) expected

amount that arm i contributes to the time-discounted reward of the policy RC is
bounded below by

q ·
∞
∑

t=1

at,iη
t−1. (9)

When the policy OPTγ is applied with discount rate γ, the discounted reward received

from the tth pull of arm i is R̂t,iγ
t−1+

∑
j 6=iMt,i,j . Consequently, the unconditional ex-

pected contribution of arm i to the discounted reward of OPTγ is

∞
∑

t=1

at,iγ
t−1. (10)

We next prove that the numbers (at,i)t=0,1,... form a non-increasing sequence. In the
following calculation, we use that Mt+1,i,j ≥ Mt,i,j for every t, i, j, and that the re-
wards from arm i form a Martingale sequence. We repeatedly apply the law of total
probability:

at+1,i = E

[

R̂t+1,iγ
∑

j 6=iMt+1,i,j

]

= E

[

E

[

E

[

R̂t+1,iγ
∑

j 6=iMt+1,i,j | St+1,i

]

| St,i, R̂t,i, {Mt,i,j | 1 ≤ j ≤ k}
]]

≤ E

[

E

[

γ
∑

j 6=iMt,i,j · E
[

R̂t+1,i | St+1,i

]

| St,i, R̂t,i, {Mt,i,j | 1 ≤ j ≤ k}
]]

= E

[

E

[

γ
∑

j 6=iMt,i,j · R̂t,i | St,i, R̂t,i, {Mt,i,j | 1 ≤ j ≤ k}
]]

= E

[

E

[

γ
∑

j 6=iMt,i,j · R̂t,i | R̂t,i, {Mt,i,j | 1 ≤ j ≤ k}
]]

= E

[

R̂t,iγ
∑

j 6=iMt,i,j

]

= at,i.

Because at,i − at+1,i ≥ 0 for all t, we can now bound

(1−γ)
∞
∑

t=1

at,iγ
t−1 = a1,i−

∞
∑

t=1

γt·(at,i−at+1,i) ≤ a1,i−
∞
∑

t=1

ηt·(at,i−at+1,i) = (1−η)
∞
∑

t=1

at,iη
t−1.

Combining this inequality with Equations (9) and (10), and summing over all arms
i, we obtain that the expected time-discounted payoff of RC is at least

q ·
∑

i

∞
∑

t=1

at,iη
t−1 ≥ q · 1−γ

1−η ·
∑

i

∞
∑

t=1

at,iγ
t−1 =

(

1−γ
1−η

)2

·OPTγ ,

where we used the definition of q in the last step. This completes the proof. 2



6. EXISTENCE OF GOOD POLICIES: PROOF OF LEMMA 3.3

In this section, we prove Lemma 3.3, which relies on Theorem 1.2 and Lemma 3.2.
Given a constraint on the fractional expected cost b, this lemma shows the existence
of an algorithm which randomizes between two time-expanded policies, satisfying the
payment constraint, and does well with respect to the optimal policy.

Proof of Lemma 3.3. For any probability p ∈ [0, 1], let η(p) = (1−p)γ
1−pγ , λ(p) = p

1−p , and

define b(p) = C(γ)(TEp,OPTη(p)
)/OPTγ to be the fraction of the optimal reward that the

time-expanded version of OPTη(p) pays the agents at discount γ.
Let bmax = supp∈[0,1] b(p). If b ≥ bmax, then we choose p = 0 and A = OPTγ . We satisfy

the claimed constraint on R(γ)(A) = OPTγ because 1−pγ+ p·b
1−p = 1 at p = 0. We satisfy

the claimed constraint on C(γ)(A) = b(0) · OPTγ because b(0) ≤ bmax ≤ b. Thus, it is
sufficient to consider the case b < bmax from now on.

For any p ∈ [0, 1], combining Theorem 1.2 with Lemma 3.2, we obtain that the time-
expanded version of OPTη(p) satisfies the following guarantee for the value of the La-
grangian relaxation:

R
(γ)
λ (TEp,OPTη(p)

) ≥ (1− pγ) ·R(γ)(OPTη(p)). (11)

We now use the result for the Lagrangian relaxation to obtain a bound on the con-
strained optimization problem. Equation (11), applied with λ = λ(p), implies that

R(γ)(TEp,OPTη(p)
) ≥

(

1− pγ +
p · b(p)
1− p

)

·OPTγ . (12)

Thus, if there exists a p with b(p) = b, then we can simply set A = OPTη(p), and
obtain the desired inequality even for ǫ = 0. Notice that for b = 0, we can choose p = 1
(i.e., the myopic policy), which gives b(p) = 0 = b, so that we have already established
the existence of A for b = 0.

It remains to consider the case b ∈ (0, bmax) with b(p) 6= b for all p ∈ [0, 1]. Consider
two sets, S+ = {p ∈ [0, 1] | b(p) > b} and S− = {p ∈ [0, 1] | b(p) < b}. Because there are
no p with b(p) = b, S+ and S− form a partition of [0, 1], and because b ∈ (0, bmax), both
sets are non-empty.

Because S− and S+ are complements of each other, and the complement of a closed
set is open, S− and S+ cannot both be closed. If S− is not closed, then cl(S−)\S− is non-
empty, and contains some point p; by definition, p ∈ S+. Similarly, if S+ is not closed
then cl(S+) \ S+ contains a point p, which is also in S−. Without loss of generality,
assume that there is a p ∈ S+ ∩ cl(S−); the proof of the other case is similar. Let (pn)n
a sequence of values in S− such that limn→∞ pn = p. Applying Inequality (12) to p and
pn gives us that

R(γ)(TEpn,OPTη(pn)
) ≥

(

1− pn · γ +
pn · b(pn)
1− pn

)

·OPTγ ,

R(γ)(TEp,OPTη(p)
) ≥

(

1− p · γ +
p · b(p)
1− p

)

·OPTγ .

Define α+
n = b−b(pn)

b(p)−b(pn)
and α−

n = b(p)−b
b(p)−b(pn)

, so that α−
n + α+

n = 1. Consider the al-

gorithm An which initially flips a biased coin, and runs TEpn,OPTη(pn)
with probability

α−
n and TEp,OPTη(p)

with probability α+
n .



By linearity of expectation, the expected total time-discounted payment of An is
exactly α−

n · b(pn) · OPTγ + α+
n · b(p) · OPTγ = b · OPTγ , and its expected total time-

discounted reward (divided by OPTγ for legibility) is at least

α−
n ·

(

1− pn · γ +
pn · b(pn)
1− pn

)

+ α+
n ·

(

1− p · γ +
p · b(p)
1− p

)

. (13)

Let δn = |pn − p|. Then, Equation (13) is bounded below by

α−
n ·

(

1− (p+ δn) · γ +
(p− δn) · b(p−n )

1− p+ δn

)

+ α+
n ·

(

1− (p+ δn) · γ +
(p− δn) · b(p+n )

1− p+ δn

)

.

Using that α+
n + α−

n = 1 and α−
n · b(p−n ) + α+

n · b(p+n ) = b shows that this is equal to

1− (p+ δn) · γ + (p−δn)·b
1−p+δn

, and we have the bound

R(γ)(An) ≥
(

1− (p+ δn) · γ +
(p− δn) · b
1− p+ δn

)

·OPTγ .

In the limit as n→ ∞, this expression converges to
(

1− p · γ + p·b
1−p

)

OPTγ . Thus, given

ǫ > 0, we can choose n large enough that R(γ)(An) ≥
(

1− p · γ + p·b
1−p

)

·OPTγ − ǫ. 2

7. A MATCHING LOWER BOUND: DIAMONDS IN THE ROUGH

In this section, we prove Lemma 3.1. For any b ≤ γ, we exhibit a MAB instance of
type “Diamonds in the Rough” with OPTγ arbitrarily close to 1 on which any policy

incurring a total expected payment of at most b obtains reward at most 1− (
√
γ−

√
b)2.

Given b and γ, define λ =
√

γ
b
− 1 and ψ = 1

1+λγ(1 − γ). There is one arm with

known constant reward ψ + (1− γ)2. In addition, there is a practically infinite supply3

of collapsing arms: Each such arm has a constant payoff; this constant is M(1 − γ)2

(the good state) with probability 1/M , and 0 otherwise. The constant payoff is revealed
(or, by the principle of deferred decisions, determined) the first time the arm is pulled.
We treat M as infinite here; it is easy to see that the same bound is obtained formally
by taking the limit of upper bounds using instances with M → ∞.

The expected payoff when pulling one of the collapsing arms is (1−γ)2; hence, unless
a collapsing arm has already been collapsed to the good state (in which case both the
optimal algorithm and a myopic agent will pull the good arm), the incentive payment
required to get an agent to pull a collapsing arm is ψ.

Because ψ ≤ γ(1 − γ), the policy that always pulls the deterministic arm achieves

a time-discounted payoff of 1
1−γ

(

(1− γ)2 + ψ
)

= 1 − γ + ψ
1−γ ≤ 1. On the other hand,

the policy that always pulls an uncollapsed arm until one of them collapses to the good
state, and then pulls that arm forever after, achieves a time-discounted payoff W that
satisfies

W = 1
M

·M(1− γ)2 · 1

1− γ
+

(

1− 1

M

)

γW = 1− γ + γW,

because M is infinite while W is finite. This implies that W = 1; thus, the optimal
policy in the absence of selfish agents is the second one, and its time-discounted payoff
is 1 (or arbitrarily close to 1, when the number of arms is finite).

3This infinite number of arms serves to make the construction clearer. By making the number k of arms
sufficiently large (but still finite), the optimum payoff can be arbitrarily close to 1. The infinite supply avoids
unnecessary complications from corner cases in which the optimum policy runs out of arms to explore.



Remark 7.1. By removing the arm with constant reward, we obtain an instance
consisting only of collapsing arms. Changing the discount rate to η while keeping the

arms’ good payoff at M(1− γ)2, we see that the solution for W is now W = (1−γ)2

(1−η)2 . This

shows that the bound of Theorem 1.2 is tight.

Consider the Lagrangian payoff R(γ)(A)−λC(γ)(A), and let A be a policy maximizing
this quantity, denoting by V its time-discounted Lagrangian payoff. Notice that A must
always play a collapsed arm in a good state if there is one. If no arm has collapsed
to a good state, the situation is exactly the same as at the beginning: the only two
alternatives are to play the deterministic arm (and make no incentive payment) or to
play an uncollapsed arm and make an incentive payment of ψ. In the former case, the
immediate reward is (1− γ)2 +ψ, and the cumulative time-discounted reward starting
at the next time step is γV . In the latter case, a payment of ψ is made (and weighted
by λ); then, with probability 1/M , the reward M(1 − γ)2 is obtained for all remaining
time steps, for a total time-discounted reward of M(1 − γ). With probability 1 − 1/M ,
no reward is obtained, and the time-discounted reward starting at the next time step
is γV . Combining these cases, using that M → ∞ and the definition of ψ, we can now
derive the following equation for V :

V = max
{

(1− γ)2 + ψ + γV, 1
M

·M · (1− γ) +
(

1− 1
M

)

· γV − λψ
}

= γV +max
{

(1− γ)2 + ψ, 1− γ − λψ
}

= γV + (1− γ)(1− λγ

1 + λ
);

in the last step, we used that both expressions in the maximum evaluate to the same.
Solving for V gives that V = 1 − λγ

1+λ . Thus, while the optimum policy without selfish

agents achieves a time-discounted reward of 1, in the presence of selfish agents, no
policy achieves a time-discounted Lagrangian reward more than 1− λγ

1+λ .

Now consider the constrained optimization problem instead of the Lagrangian. Let A
be an optimal policy with C(γ)(A) ≤ b. We just proved thatR(γ)(A)−λC(γ)(A) ≤ 1− λγ

1+λ .

Solving for R(γ)(A), and using the definition of λ gives us that

R(γ)(A) ≤ λb+ 1− λγ

1 + λ
=

√

γb− b+ 1− γ +
√

γb = 1− (
√
γ −

√
b)2.

This gives the desired upper bound on the time-discounted reward of any policy A
subject to a constraint on the total time-discounted payment.

8. CONCLUSIONS

In this paper, we proposed the study of multi-armed bandit problems in which the arms
are pulled by selfish and myopic agents. In order to incentivize the agents to explore
arms other than the myopically optimal one, the principal must offer them payments.
We studied the tradeoff between the total (time-discounted) payments made and the
total (time-discounted) reward; our main result was a complete characterization of the
region of (reward, payment) pairs achievable.

We believe that our model forms a natural and robust theoretical basis from which
to analyze crowd-sourced information discovery, scientific agendas, and other social
endeavors in which agents’ myopic objectives stand in conflict with a principal’s long-
term agenda. However, several specific modeling choices can be altered and would give
rise to different technical questions.

First, the bound on the total time-discounted payoffs is required to hold in expecta-
tion. Instead, one could require it to hold pointwise, i.e., the principal never pays the



agents more than b ·OPT. This requirement would necessitate using a non-Markovian
policy in place of the time-expanded policy that we analyzed in this paper, thus mak-
ing the problem potentially harder to solve. Nonetheless, it is a natural and interesting
question for future research.

The principal’s objective in some cases, e.g., when crowd-sourcing the design of an
artifact such as a logo or a website, may not be the sum of payoffs, but rather the
maximum. In this case, a finite time horizon may be a more suitable model, and the
characterization question will take on a more discrete nature.

So far, we have also assumed that payoffs of arms are entirely uncorrelated. When
exploring a possible design (or research) space, it is natural to assume that similar
alternatives would yield similar payoffs. This notion of similarity among alternatives
could be modeled, for instance, as a Lipschitz condition on payments [Kleinberg et al.
2008] or as a Gaussian process prior [Srinivas et al. 2012]. An interesting question
would be whether such a model could be fruitfully combined with one involving selfish
myopic agents performing the exploration.
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