
Auctions for Share-Averse Bidders

Mahyar Salek and David Kempe

Department of Computer Science, University of Southern California, CA 90089-0781,
USA, {salek, dkempe}@usc.edu

Abstract. We introduce and study share-averse auctions, a class of auc-
tions with allocation externalities, in which items can be allocated to
arbitrarily many bidders, but the valuation of each individual bidder de-
creases as the items get allocated to more other bidders. For single-item
auctions where players have incomplete information about each others’
valuation, we characterize the truthful mechanism that maximizes the
auctioneer’s revenue, and analyze it for some interesting cases.
We then move beyond single-item auctions, and analyze single-minded
combinatorial auctions. We derive sufficient conditions for a truthful al-
location in this setting. We also obtain a

√
m-approximation algorithm

for maximizing social welfare, which is essentially tight unless P=NP.

1 Introduction

Consider the problem of selling a piece of technological or financial advice. In
principle, such information can be sold to all participating bidders at no marginal
cost to the seller. However, in reality, the value of the information to each in-
dividual bidder decreases the more other bidders receive the information, since
the winner(s) of the auction will not obtain as strong a technological or financial
advantage over the losers as they would have otherwise. A similar scenario can
arise for physical items: for instance, the value a shared network infrastructure,
a road, or a park decreases in the number of others who have access to it.

The preceding examples motivate the study of auctions for share-averse buy-
ers (share-averse auctions for brevity): auctions in which items can in principle
be allocated to arbitrarily many bidders, but the valuation of each individual
bidder decreases as the items get allocated to more other bidders. Share-averse
auctions fall broadly in the scenario of auctions with allocation externalities [10,
2, 8]. They differ in that the externalities take on a simpler form: we assume
that agents care only about the number of other players sharing items with
them, but not about their identity, or the allocation of items which the player
does not share. Furthermore, traditional models [10, 2, 8] for externalities use
additive terms, whereas in the share-averseness model, multiplicative decreases
appear more appropriate.

Our main results in this paper are twofold. First, we extend the seminal work
of Myerson [14] and characterize optimal auctions for share-averse bidders if only
a single item is auctioned off. We then focus on the case where all bidders have the
same share-averseness response function f , and derive a partial characterization
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of the optimal allocation rule in those cases. As a special case, we recover a
result by Maskin and Riley [13] on revenue maximization for multi-unit auctions
if bidders are unit-demand, i.e., they need at most one copy of an item.

Second, we consider the case of allocating bundles to share-averse single-
minded bidders in a combinatorial auction. In our model, the value ascribed to
the bundle by such a bidder depends on the maximum number of other bidders
she shares any item with. For this problem, we characterize sufficient condi-
tions for a truthful mechanism in the spirit of [12], and provide a (tight)

√
m

approximation mechanism.

2 Related Work

Share-averseness is a negative allocation externality among the winners. Auctions
with externalities [9, 8, 10, 2] are often studied in economics both for revenue
maximization and efficiency. Many of these scenarios have externalities affecting
the loser of auctions, whereas our results are based in a reduction in utility for
the winners. Jehiel et al. [9, 8] study both informational and allocative type-
independent externalities. Brocas [2] looks at the extension where externalities
depend on the types of both the winner and loser of the good. Recently, Ghosh
et al. [4] looked at the computational challenges of allocation with externalities
and showed inapproximability results for general case. In their result, the utility
depends not only on the number of bidders sharing the item, but also on the
identity of the winner set. This makes the problem significantly more complex.

Our work also relates to the problem of allocating public goods or clubs
subject to congestion [3]. Public goods are defined as being shared by more than
one agent. Congestion describes the decrease in utility to the individuals as a
result of the sharing. Much of the work on clubs and public goods focuses on the
issues of cost sharing and incentive compatibility (see, e.g., [7]). While there has
been some work on equilibria in games between different clubs trying to maximize
profits (e.g., [15]), these tend to focus on the competition between multiple clubs
vying for customers rather than an optimal auction for membership in one club
with given size.

Approximation algorithms and truthful mechanisms for combinatorial auc-
tions [16] have recently received a lot of attention. Much of the focus has been on
the single-minded case. With m denoting the number of items, Lehman et al. [12]
were the first to show that a simple greedy algorithm gives a

√
m-approximation

(which is best possible unless P=NP). Gonen et al. [6, 5] use linear program-
ming to extend the results to the more general case of Packing Integer Programs
(PIPs), where multiple copies of each item are available. Later, Briest et al. [1]
improve their result to a truthful m1/b approximation algorithm, where b is the
minimum of the multiplicities of all items. We will use both algorithms as a black
box in deriving our approximation result for single-minded bidders.
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3 Single-Item Auctions with a Prior

In this section, we focus on the special case of selling a single item to risk-neutral
bidders. The set of all n bidders is denoted by N := {1, . . . , n}. Each bidder i
has a private valuation vi, if she is allocated the item exclusively. If she shares
the item with k other bidders, her valuation decreases to vi · fi(k). We call fi

the share-averseness function of bidder i, and require that fi(0) = 1 and fi

is monotonically non-increasing. We assume that share-averseness functions are
common knowledge, as opposed to valuations, which are private.

Following standard convention (e.g., [14]), we assume that each bidder’s val-
uation is drawn independently from some distribution gi : [ℓi, ri] → R

+ over
a finite interval [ℓi, ri], and that all bidders share this belief. We denote the
cumulative distribution function (CDF) of gi by Gi(v) =

∫ v

ℓi
gi(t)dt. We let

V = [ℓ1, r1]×· · ·× [ℓn, rn] denote the set of all possible combinations of bidders’
values, and V−i = ×j∈N,j 6=i[ℓj , rj ] the set of possible values of bidders other
than bidder i. The joint distribution on valuation vectors v = (v1, . . . , vn) is
g(v) =

∏

i∈N gi(vi). Likewise, we define v−i = (v1, . . . , vi−1, vi+1, . . . , vn) and
g−i(v−i) =

∏

j∈N,j 6=i gj(vj).
In this setting, we want to derive a truthful mechanism maximizing the auc-

tioneer’s revenue. Such a mechanism can be described by functions ai : V → [0, 1]
and pi : V → R

+ for each agent i. We denote the vector of all of these functions
by a and p, respectively. For each vector v of valuations, ai(v) is the fraction of
the item assigned to bidder i (corresponding to the visitation rate in club good
theory [3]), and pi(v) the expected payment of agent i. Given that we allow
fractional assignments of items, we need to define the notion of share-averseness
more precisely. We set wi(v) =

∑

j∈N,j 6=i aj(v) to be the total fractional sharing
of bidder i. One way to interpret wi(v) is as the expected number of bidders
that i is sharing with if each bidder j receives the item with probability aj(v).

We also need to extend the share-averse function fi to fractional values now.
We define f ′

i(t) as the convex combination (⌈t⌉−t)·fi(⌊t⌋)+(1−(⌈t⌉−t))·fi(⌈t⌉).
This definition ensures monotonicity of f ′

i . Henceforth, whenever the distinction
is clear from the context, we will use fi to refer to the extension of the function
to fractional values.

Remark 1. It may appear natural to explicitly consider the aj(v) values as proba-
bilities, and assign the item to each bidder independently with probability aj(v).
The disadvantage of this approach is that the expected utility of bidder i now
depends not only on wi(v), but also on the exact fractional assignments of each
other agent, violating our framework of share-averseness.

There is a natural interpretation of the function f ′
i defined above. If the item

is shared over a period of time, then standard network flow techniques can be
used to efficiently find an assignment over time in which each bidder i shares
the item with ⌈w⌉ other bidders for a 1 − (⌈w⌉ − w) fraction of time, and with
⌊w⌋ other bidders for the remaining ⌈w⌉ − w fraction. (Here, w = wi(v).) From
this flow argument, we can also derive an actual distribution letting us interpret
the ai(v) as probabilities. After finding a period of time with corresponding
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assignments, simply define a distribution over allocations by drawing a uniformly
random point in time, and then taking the allocation at that time.

The utility of player i under valuations v is then ai(v) · vi · fi(wi(v))− pi(v).
Therefore, the expected utility of player i with valuation vi is

ui(vi) =
∫

V−i
(ai(v) · vi · fi(wi(v)) − pi(v)) · g−i(v−i)dv−i,

where v = (vi,v−i), and dv−i = dv1 · · · dvi−1dvi+1 · · · dvn. The expected utility
of the seller from this auction is

û =
∫

V

∑

i∈N pi(v)g(v)dv.

In order to ensure that the auction mechanism is feasible and truthful, the
payments and allocated fractions will have to satisfy voluntary participation and
incentive compatibility (truthfulness), as captured by the following two condi-
tions for each bidder i:

ui(vi) ≥ 0 (1)

ui(vi) ≥
∫

V−i

(ai(v̂,v−i) · vi · fi(wi(v̂,v−i)) − pi(v̂,v−i)) · g−i(v−i)dv−i∀v̂.(2)

An auction mechanism is specified by the functions determining the (frac-
tional) assignments and the payments of each bidder i, i.e., by the pair (a,p).
To simplify subsequent notation, we define

Qi(v) =
∫

V−i
ai(v,v−i) · fi(wi(v,v−i)) · g−i(v−i)dv−i

to be the expected conditional fraction of the original valuation bidder i ex-
pects having valuation v. We are now ready to characterize feasible truthful and
individually rational mechanisms (a,p).

Lemma 1. The following conditions are necessary and sufficient for (a,p) to
be feasible, truthful, and individually rational.

1. Monotonicity: For each bidder i, if v ≤ v′, then Qi(v) ≤ Qi(v
′).

2. Individual Rationality: For each bidder i and valuation v, ui(v) ≥ 0.
3. (Extended) Incentive Compatibility (EIC): The expected utility function of

each bidder i satisfies ui(v) = ui(ℓi) +
∫ v

ℓi
Qi(t)dt.

Proof. The proof is similar to Lemma 2 from [14]. We only sketch it here due
to space constraints. The utility of agent i with true valuation vi, but reporting
a different valuation v̂, is

∫

V−i

(ai(v̂,v−i) · vi · fi(wi(v̂,v−i)) − pi(v̂,v−i)) · g−i(v−i)dv−i

=
∫

V−i
(ai(v̂,v−i) · (v̂ + (vi − v̂)) · fi(wi(v̂,v−i)) − pi(v̂,v−i)) · g−i(v−i)dv−i

= ui(v̂) + (vi − v̂)Qi(v̂).
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Thus, incentive compatibility for bidder i is equivalent to requiring that

ui(vi) ≥ ui(v̂) + (vi − v̂)Qi(v̂), (3)

for all vi, v̂ ∈ [ℓi, ri]. The rest of the proof is nearly identical to [14].

The next theorem captures the notion that a mechanism is truthful if and
only if the allocation rule for each bidder is monotone, and the prices are defined
appropriately. The proof is similar to the proof of Lemma 3 by Myerson [14],
and due to space constraints, we defer it to the full version of this paper.

Theorem 1. Given the allocation functions a1, . . . , an, let payment functions p̂i

be defined as p̂i(v) = ai(v)vifi(wi(v)) −
∫ vi

ℓi
ai(t,v−i)fi(wi(t,v−i))dt for valua-

tions v = (v1, . . . , vn). Then, a share-averse auction is truthful if and only if the
allocation functions ai satisfy the monotonicity condition Qi(v) ≤ Qi(v

′) when
v ≤ v′. Furthermore, the revenue-maximizing auction maximizes

∫

V

∑

i∈N

(

vi − 1−Gi(vi)
gi(vi)

)

· ai(v)f(wi(v))g(v)dv. (4)

Remark 2. Note that we focus here only on the revenue maximization problem.
The problem of maximizing social welfare is much simpler in the single-item
case. The following mechanism can be easily seen to maximize social welfare
and be truthful.

For each k, let Sk be a set of at most k elements maximizing
∑

i∈S vifi(k−1),
with an arbitrary tie breaking rule consistent over all k. Given k, one can compute
Sk with simple sorting. The welfare maximizing mechanism simply picks the set
Sk with the largest social welfare. The proof uses a simple exchange argument
both to show that the optimum uses an integral allocation and picks Sk. To make
the mechanism truthful, one can simply charge each bidder the VCG payments,
and standard arguments prove incentive compatibility.

3.1 Regular Auctions

The term vi − 1−Gi(vi)
gi(vi)

in Theorem 1 is traditionally called the virtual valuation

(or effective bid) of agent i. The function ci(x) = x− 1−Gi(x)
gi(x) is called the virtual

valuation function. If all virtual valuation functions ci are strictly increasing, the
auction is called regular. Regularity is a standard assumption in auction theory,
and for the rest of this section, we will focus on regular auctions. We also make
the further assumption that all bidders have the same share-averseness function,
i.e., fi = f for all i.

In terms of the virtual valuations, we can state the auctioneer’s objective as
maximizing

∫

V

∑

i∈N ci(vi) ·ai(v)f(wi(v))g(v)dv. Without loss of generality, we
will assume for the remainder of this section that bidders are sorted by virtual
valuations, i.e., c1(v1) ≥ c2(v2) ≥ · · · ≥ cn(vn).

Theorem 2. Without loss of generality, the optimal mechanism for general
share-averse bidders has the following properties:
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1. The allocations are monotone non-increasing, i.e., ai(v) ≥ ai+1(v) for all i.
2. If ci(vi) < 0, then ai(v) = 0.
3. For every index i with ai+1(v) > 0, we have ai(v) + ai+1(v) ≥ 1.

Notice that the theorem implies that there can be at most one bidder i with
allocation 0 < ai(v) < 1

2 .

Proof Sketch. An easy calculation using the monotonicity of f shows that
swapping the allocations of j and j + 1 cannot decrease the utility of the auc-
tioneer. Therefore, the optimal allocation is monotone non-increasing using a
simple exchange argument. (Details are deferred to the full version.)

If there is a bidder with negative virtual valuation who has a (fractional)
allocation, it is easy to see that the auctioneer’s revenue strictly increases by
taking away that bidder’s allocation.

If there is a j such that aj(v)+aj+1(v) ≤ 1, then consider the new assignment
giving bidder j an allocation of aj(v) + aj+1(v), and bidder j + 1 an allocation
of 0. We obtain that

ûOPT −
∫

V

∑

i6=j,j+1

ci(vi)ai(v)f(wi(v))

=
∫

V
cj(vj)aj(v)f(wj(v)) + cj+1(vj+1)aj+1(v)f(wj+1(v))g(v)dv

≤
∫

V
+cj(vj) · (aj(v) + aj+1(v)) · f(wj(v) − aj+1(v))g(v)dv

= ûOPT′

−
∫

V

∑

i6=j,j+1 ci(vi)ai(v)f(wi(v)),

and can therefore repeatedly perform such alterations until the third condition
is satisfied.

3.2 Convex Share-Averseness Functions

A very natural further restriction on f is that it is convex over its entire support.
Intuitively, this corresponds to bidders losing their sensitivity to more and more
other bidders sharing the item: the addition of the 100th bidder causes less
marginal loss in utility than the addition of the second bidder. If f is convex,
we can derive stronger conditions on the allocated fractions than Theorem 2.

Theorem 3. Under the optimal mechanism for convex share-averse bidders, at
most one bidder j will obtain a fractional allocation 0 < aj(v) < 1.

Proof. By Theorem 2, the allocations in OPT are sorted, and no bidder with
negative virtual valuation obtains an allocation. Suppose that in OPT, there
is a j such that 1 > aj(v) ≥ aj+1(v) > 0. By Theorem 2, we know that
aj(v) + aj+1(v) ≥ 1. We construct an alternate solution, where bidder j’s new
allocation is 1, and bidder (j + 1)’s is aj(v) + aj+1(v) − 1.

Define W :=
∑

i6=j,j+1 ai(v). We can then see that aj(v) ≥ aj+1(v) implies

wj(v) = W + aj+1(v) ≤ W + aj(v) = wj+1(v),
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and because f is monotone non-increasing, f(wj(v)) ≥ f(wj+1(v)). There-
fore, the convexity of f implies that f(wj(v) − δ) − f(wj(v)) ≥ f(wj+1(v)) −
f(wj+1(v) + δ), for any δ ≥ 0. In other words, since agent j is currently not
sharing as much as agent j + 1, reducing her load by δ gives a larger increase
than the decrease of agent j+1 by increasing her load by δ. Setting δ = 1−aj(v),
we can now use the above reasoning to derive

ûOPT −
∫

V

∑

i6=j,j+1

ci(vi)ai(v)f(wi(v))

=
∫

V
cj(vj)aj(v)f(wj(v)) + cj+1(vj+1)aj+1(v)f(wj+1(v))g(v)dv

≤
∫

V
cj(vj)aj(v)f(wj(v) − δ) + cj+1(vj+1)aj+1(v)f(wj+1(v) + δ)g(v)dv

<
∫

V
cj(vj)f(wj(v) − δ) + cj+1(vj+1) · (aj+1(v) − δ) · f(wj+1(v) + δ)g(v)dv

= ûOPT′

−
∫

V

∑

i6=j,j+1 ci(vi)ai(v)f(wi(v)).

The first inequality used the convexity observation along with the fact that
cj(vj)aj(v) ≥ cj+1(vj+1)aj+1(v) by the sorting. The second inequality used
monotonicity of f and the sorting cj(vj) > cj+1(vj+1). By repeating such real-
locations, we derive an allocation with at most one fractional aj(v).

Remark 3. A proof similar to Theorem 3 derives the optimal mechanism for
multi-unit auctions with regular virtual valuations. It thus recovers Proposition
4 of Maskin and Riley [13]. A multi-unit auction with k items can be modeled by
bidders with the share-averseness function f(x) = 1 for x ≤ k − 1, and f(x) = 0
for x > k − 1. An easy calculation using Theorem 2 shows that the optimal
mechanism assigns the item fully to the first min(j, k) bidders, and not at all to
the remaining ones, where j ≤ n is the largest index such that cj(vj) ≥ 0. The
payment of a winning agent i can then be easily derived to be the threshold bid,
the lowest bid with which agent i could have been assigned the item.

4 Single-minded Combinatorial Auctions

In this section, we extend the study of share-averse auctions to the combinatorial
setting in which there is more than one item. The set of all items is M :=
{1, . . . ,m}. Bidders are single-minded. That is, for each bidder i, there exists a
set Si such that v∗

i (S) = v∗
i (Si) for all S ⊇ Si, and v∗

i (S) = 0 otherwise. These
are the bidders’ valuations if they do not share any items in S.

An assignment B = (B1, B2, . . . , Bn) of items Bi ⊆ M to bidders need
not have disjoint bundles. (However, we restrict our focus to mechanisms that
assign items only integrally.) We now use wi(B) = maxj∈Bi

(ni,j) to denote the
maximum number of other bidders that i shares any of her items with, where
ni,j = |{i′ 6= i | j ∈ Bi′}| is the number of users sharing item j with bidder i.
The valuation of bidder i is vi(B) = v∗

i (Bi) · f(wi(B)). Notice that we assume
in this section that all bidders have the same share-averseness function f .
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Remark 4. Naturally, the maximum number of other bidders is not the only
possible measure of sharing. One could instead consider a (weighted) average,
for example. The maximum number appears natural in settings where the items
are combined in a physical way, and limited access to any single item causes a
bottleneck. An investigation of other aggregations is left for future work.

A bid bi comprises a pair (S, v). Since both Si and v∗
i (Si) are private in-

formation, bidders can be strategic both about the set and the valuation they
declare. The vector of the bids of all bidders is denoted by b. The bids of all
bidders except bidder i are denoted by b−i.

4.1 A sufficient condition for a truthful mechanism

Lehmann et al. [12] proved that an allocation rule for single-minded combinato-
rial auctions gives rise to a truthful mechanism if the allocation rule is monotone
and exact, in the sense that each bidder i is either allocated her desired set Si or
the empty set, and increasing one’s bid can never result in moving from receiving
Si to receiving the empty set. We extend these conditions as follows:

1. Exactness: For each bidder i, either Bi(b) = Si or Bi(b) = ∅.
2. Allocation Monotonicity: If S′ ⊆ S and v′ ≥ v, and Bi(b) 6= ∅ with bi =

(S, v), then wi(b) ≥ wi((S
′, v′),b−i). The is, by requesting a smaller set and

bidding higher, a bidder can only share with fewer other bidders.

Given arbitrary (but fixed) bids b−i by all bidders except i, and a fixed set
S, we define the jth critical bid τ i

j of bidder i to be the infimum of all v such
that Bi((S, v),b−i) = S and wi((S, v)) ≤ j. It then follows immediately from
allocation monotonicity that τ i

1 ≥ τ i
2 ≥ · · · ≥ τ i

m−1, and that if bidder i bids
less than τ i

m−1, she does not receive any items. Based on the critical values, we
define the following payment structure:

πi
j =















0 if j = m

f(m − 1)τ i
m−1 if j = m − 1

(f(j) − f(j + 1))τ i
j + πi

j+1 if j < m − 1.

Expanding the recursive formula gives πi
j = f(j)τ i

j +
∑m−1

k=j+1 f(k)(τk−τk−1).

Given an allocation scheme, we will charge bidder i the amount πi
j for the unique

index j such that vi ∈ (τ i
j , τ

i
j−1]. (If vi > τ i

m−1, then we define j = m.) Note that
this payment does not depend on the amount of the agent’s bid, but only on the
interval which the bid falls into. In the sequel, we assume that the bidder i is
fixed, and omit it from the notation where it is clear. The following proposition
follows fairly directly from the definition of the payment scheme:

Proposition 1. If bidder i’s bid is denied, her utility is 0. If bidder i bids truth-
fully, her utility is non-negative.
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The main result of this section is the following theorem:

Theorem 4. If the allocation rule satisfies Exactness and Monotonicity, then
the payment scheme πi

j yields a truthful implementation.

Proof. Assume that bidder i desires set S with valuation v, and submits a
bid b′ = (S′, v′). By Proposition 1, b′ must lead to winning S′, and S′ ⊇ S.
By Lemma 3 below, bidding (S, v′) gives at least the same utility. In turn, by
Lemma 2, the utility of bidding (S, v) is at least that of bidding (S, v′). Hence,
it is a dominant strategy to declare (S, v).

Lemma 2. If bidder i desires set S with valuation v, declaring (S, v) dominates
declaring (S, v′) for all v′.

Proof Sketch. Due to space constraints, the proof is deferred to the full ver-
sion of the paper. The idea is to distinguish several cases. The easy cases are
when either (S, v) or (S, v′) are losing bids. In those cases, it is easy to show
that the utility of the truthful bid dominates the other one. If both bids lead
to receiving the set S, then we distinguish whether v or v′ leads to more shar-
ing. In both cases, somewhat involved calculations show that the non-truthful
declaration cannot lead to higher utility.

Lemma 3. If bidder i desires set S with valuation v, declaring (S, v) dominates
declaring (S′, v) for all S′.

Proof. If S′ 6⊇ S, then bidder i can obtain valuation at most 0. Let ν =
wi((S, v),b−i) and ν′ = wi((S

′, v),b−i). Note that ui((S, v),b−i) = f(ν)(v −
τν)+

∑m−1
k=ν+1 f(k)(τk−τk−1), and ui((S

′, v),b−i) = f(ν′)(v−τν′)+
∑m−1

k=ν′+1 f(k)(τk−
τk−1), where ν ≤ ν′ by monotonicity. Define φ(S, v) = f(j) if τj < v < τj−1

for j < m and 0 otherwise. Note that by definition ui((S, v),b−i) =
∫ v

0
φ(S, v).

Similarly, ui((S
′, v),b−i) =

∫ v

0
φ(S′, v).

We show that φ(S′, x) ≤ φ(S, x) for all x ∈ [0, v]. This immediately implies
ui((S

′, v),b−i) ≤ ui((S, v),b−i). If (S, x) is a losing bid, then ui((S
′, v),b−i) =

ui((S, v),b−i) = 0. Otherwise, (S, x) is a winning bid sharing with nx other
winners. By monotonicity, the bid (S′, x) would not have been granted with
n′

x < nx bidders, so x ≤ τnx−1, and φ(S′, v) ≤ f(nx) = φ(S, v).

4.2 A
√

m-approximation algorithm

In this section, we present a mechanism approximating the social welfare of the
assignment A, V (A) =

∑

i∈N vi(Bi(b)). We will achieve a
√

m approximation.
Since the problem contains the Set Packing problem as a special case (with
share averseness function f(x) = 1 for x = 0 and f(x) = 0 for x > 0), it is

NP-hard to approximate the problem to within a factor m
1
2−ǫ for any ǫ > 0.

Consider the modified problem (which we denote by Pa,b), in which we modify
the share-averseness function as follows: fa,b(x) = f(a) for x ≤ a, fa,b(x) = f(x)
for a ≤ x ≤ b, and fa,b(x) = 0 for x > b. Then, in the optimum solution, w.l.o.g.,
each item is shared between a and b times. This modified problem Pa,b can be
reasonably well approximated, so long as a and b are chosen “close enough”.
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Lemma 4. Pa,b can be approximated within a factor min(
√

m,m
1
b ) f(b)

f(a) .

Proof. Consider the following set packing problem. The sets are exactly the
desired sets Si, with valuations vi. We impose a hard constraint that each item
can be shared at most b times. Thus, we obtain a packing problem with a uniform
upper bound of b on the number of times each item can be included.

Briest et al. [1] show that such a packing problem can be approximated

to within min(
√

m,m
1
b ). Let OPT be the optimum solution to Pa,b. For each

allocated set Si, the optimum, by definition, obtains valuation at most f(a)vi.
Therefore, the optimum solution to the packing problem has valuation at least

1
f(a)V (OPT). Thus, the approximate solution returned by the algorithm of [1]

has valuation at least 1

f(a)·min(
√

m,m
1
b )

times that of OPT. For each allocated set

Si, our solution obtains valuation at least f(b)vi, completing the proof.

Next, we show that so long as we are willing to incur a constant factor loss in
the approximation guarantee, we can restrict our attention to solutions in which
the share-averseness function does not take on too small values.

Lemma 5. Let n̄ be the largest j such that f(j) ≥ 1
n . Then, there is a solution

OPT′ whose value is within a factor 2 of that of OPT, such that no item is
shared more than n̄ times in OPT′.

Proof. Let I be the set of all bidders sharing items with more than n̄ other
bidders. If the total valuation obtained from bidders in I is at most 1

2V (OPT),
then we allocate each bidder in I the empty bundle. This ensures the condition,
while reducing the total value of the solution by at most a factor of 2.

On the other hand, if the total valuation of bidders in I is at least half the
optimum valuation, then let i∗ ∈ I be the bidder with highest valuation for her
set Si. If we allocate i∗ her bundle and everyone else the empty bundle, we again
ensure that no one shares with more than n̄ other bidders. Furthermore, the
choice of i∗ gives us that

vi∗ ≥ 1
|I| ·

∑

i∈I vi ≥ 1
n · ∑i∈I(nf(n̄ + 1))vi ≥ 1

2V (OPT).

Here, we used that |I| ≤ n, and nf(n̄ + 1) ≤ 1 by definition of n̄.

The idea of our approximation algorithm is to solve several problems of the
form Pa,b, and keep the best of the solutions. In order not to lose too large a
factor f(a)/f(b), we ensure that each interval has f(a) and f(b) “reasonably
close” together. Formally, we define a sequence d1, . . . , dk+1 by d1 = 0, and
di+1 = max{j | f(j − 1) ≥ 1

2f(di)}. We stop when di ≥ n̄, and let k + 1 be the
total length. Notice that k = O(log n) by Lemma 5. The algorithm solves each
of the problems Pdi,di+1−1 using the algorithm of Briest et al. [1], and returns
the best of the solutions found. This clearly takes polynomial time.

Theorem 5. This algorithm gives a solution within a factor Ω(
√

m) of OPT.
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Proof. Let OPT be the optimum solution. For each i = 1, . . . , k, let Oj denote
the set of bidders j who were assigned their set Sj sharing with d other bidders,
for di ≤ d ≤ di+1 − 1. Because in each solution Oj , there is potentially less

sharing than in OPT, we obtain that
∑k

i=1 V (Oi) ≥ V (OPT).
Each assignment Oi is a feasible solution to Pdi,di+1−1. Therefore, by Lemma

4, the solution Ai found by the algorithm in the ith iteration satisfies

V (Ai) ≥ f(di)

min(
√

m,m1/(di+1−1))·f(di+1−1)
· V (Oi) ≥ 1

2(min(
√

m,m1/(di+1−1)))
V (Oi),

by the definition of the di. Now, consider 2 cases:

1. If V (O1) + V (O2) ≥ 1
2 · V (OPT) (i.e., sharing very little can give within a

constant factor of the optimum total welfare), then

V (A1) + V (A2) ≥ 1
2
√

m
· (V (O1) + V (O2)) = Ω( 1

2
√

m
) · V (OPT).

Therefore, at least one of A1, A2 gives an Ω( 1
2
√

m
) approximation.

2. If, on the other hand, V (O1) + V (O2) < 1
2V (OPT), then

∑k
i=3 V (Oi) ≥

1
2V (OPT). Because d4 ≥ 4, and thus each item can be allocated at least
three times in Pdi,di+1−1 for i ≥ 3, we know that the algorithm of Briest et

al. [1] gives an Ω(m1/3) approximation for each such subproblem. The best
of the solutions Ai for i ≥ 3 is at least as good as the average, i.e., at least

1
2(k−2)m1/3 V (OPT) ≥ 1

2m1/3 log(n)
V (OPT) ≥ 1

2
√

m
V (OPT),

so long as m and n are polynomially related.

5 Further Directions

In the context of single-item share-averse auctions, a promising direction for
future work is to characterize the optimum mechanism more specifically when
bidders have different share-averseness functions. Perhaps, stronger assumptions
on the distributions could help here. It would also be interesting to draw further
connections to the literature on club goods, and consider the effects of multiple
competing auctioneers.

In the context of share-averse combinatorial auctions, many directions remain
open. It would be desirable to obtain approximation guarantees (nearly) match-
ing those for regular combinatorial auctions, e.g., with submodular valuations.
For the single-minded case, our algorithm gives an essentially best-possible ap-
proximation guarantee. However, it does not satisfy the monotonicity condition
in Theorem 4. A simple randomized variation gives monotonicity in the declared
values. However, the more difficult problem is that the algorithm of Briest et
al. [1] is not monotone in terms of the number of sharing agents. Modifying
the algorithms of [1] to achieve monotonicity in the amount of sharing is an
interesting direction for future work.
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Another challenge is to obtain exact or tight approximate solutions when
bidders have different share-averseness functions. Our algorithms can be gener-
alized to this case, but current results on approximations of PIPs [11, 1] are not
quite strong enough to give the tight

√
m approximation. Finally, we have not

yet covered the case where the share-averseness functions are not public knowl-
edge. Designing mechanisms that are also incentive compatible with regard to
revealing share-averseness, or mechanisms that learn share-averseness from past
bids, is an interesting direction for future work.

Acknowledgments We thank Isabelle Brocas for useful discussions.
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