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Abstract. We study the Price of Anarchy (PoA) of the competitive cascade game following the
framework proposed by Goyal and Kearns in [11]. Our main insight is that a reduction to a Linear
Threshold Model in a time-expanded graph establishes the submodularity of the social utility func-
tion. From this observation, we deduce that the game is a valid utility game, which in turn implies
an upper bound of 2 on the (coarse) PoA. This cleaner understanding of the model yields a simpler
proof of a much more general result than that established by Goyal and Kearns: for the N -player
competitive cascade game, the (coarse) PoA is upper-bounded by 2 under any graph structure. We
also show that this bound is tight.
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1 Introduction

The processes and dynamics by which information and behaviors spread through social networks have
long interested scientists within many areas [18]. Understanding such processes has the potential to shed
light on human social structure, and to impact the strategies used to promote behaviors or products. While
the interest in the subject is long-standing, the recent increased availability of social network and informa-
tion diffusion data (through sites such as Facebook and LinkedIn) has put into relief algorithmic questions
within the area, and led to widespread interest in the topic within the computer science community.

One particular application that has been receiving interest in enterprises is to use word-of-mouth
effects as a tool for viral marketing. Motivated by the marketing goal, mathematical formalizations of
influence maximization have been proposed and extensively studied by many researchers [9, 14, 17, 23,
24, 8, 7, 16]. Influence maximization is the problem of selecting a small set of seed nodes in a social
network, such that their overall influence on other nodes in the network — defined according to particular
models of diffusion — is maximized.

When considering the word-of-mouth marketing application, it is natural to realize that multiple com-
panies, political movements, or other organizations may use diffusion in a social network to promote their
products simultaneously. For example, Samsung may try to promote their new Galaxy phone, while Ap-
ple tries to advertise their new iPhone. Companies will necessarily end up in competition with each other,
so it becomes essential to understand the outcome of competitive diffusion phenomena in the network.

Motivated by the above scenarios, several models for competitive diffusion have been proposed and
studied [2, 4, 7, 12, 20, 11, 1, 21]. Past work tends to follow one of two assumptions about the timing of
players’ moves. The first approach is to assume that all but one of the competitors have already chosen
their strategies, and to study the algorithmic problem of finding the best response [2, 4, 7, 12, 5, 6]. The
goal may be maximizing one’s own influence [2, 4, 7] or minimizing the influence of the competitors [12,
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5]. The other approach is to model the competition as a simultaneous game, in which all companies pick
their strategies at the same time [1, 11, 20, 21]. The final influence is determined by the initial seed set of
every company and the underlying diffusion process.

In this paper, we follow the second approach. In the game, the players are companies (or other or-
ganizations) who try to promote their competing products in the social network through word-of-mouth
marketing. The players simultaneously allocate resources to individuals in the social network in order
to seed them as initial adopters of their products. These resources could be free samples, time spent ex-
plaining the advantages of the product, or monetary rewards. Based on the allocated resources, the nodes
choose which of the products to adopt initially. Subsequently, the diffusion of the adoption of products
proceeds according to the local adoption dynamics. The goal for each player is to maximize the coverage
of his1 own product.

The local adoption dynamics play a vital role in determining properties of the game. In this paper,
we follow the framework proposed recently by Goyal and Kearns [11]. Their model decomposes the
local adoption decisions into two stages: switching and selection. In the switching stage, the user decides
whether to adopt any product or company at all. This decision is based on the set of neighbors who have
already adopted one of the products. If the user decides to adopt a product, in the following selection stage,
she decides which company’s product to adopt based on the fraction of neighbors who have adopted the
product from each company.

For example, assume that iPhone and Galaxy are the only two smartphones available. In the switching
stage, a user decides whether to adopt a smartphone or not, based on the fraction of her neighbors who
have already bought a smartphone. If she has decided to adopt a smartphone, in the selection stage, she
decides whether to choose an iPhone or Galaxy based on the fraction of iPhone users and Galaxy users
among her friends. The two stages are modeled using a switching function fv(α1 + α2), which gives
the probability that the user adopts one of the products, and the selection function gv(α1, α2), which
determines the probability that the user chooses the product of a specific company. Here α1 and α2 are
the fractions of the user’s friends who have already adopted the product from the two competitors. The
details of the model are presented in Section 2.

Under this framework, Goyal and Kearns have studied the Price of Anarchy (PoA) of the two-player
competitive cascade game. Informally, the PoA is a measure of the maximum potential inefficiency cre-
ated by non-cooperative activity. (The precise definition of the PoA is given in Section 2.3.) Goyal and
Kearns have shown that the PoA under the switching-selection model with concave switching functions
and linear selection functions is upper-bounded by 4.2

In this paper, we show that a stronger PoA bound for the Goyal-Kearns model follows from several
well-understood and general phenomena. The key observation is that by considering a time-expanded
graph, the Goyal-Kearns model can be considered an instance of a general threshold model. Then, the
result of Mossel and Roch [17] guarantees that the social utility function is submodular, and a simple
coupling argument establishes that players’ utility functions are competitive. With a submodular social
utility function, the game is a valid utility game. (This type of proof was used previously by Bharathi et
al. [2].) Finally, for valid utility games, the results of Vetta [22] and Blum et al. and Roughgarden [3, 19]
establish a (coarse) Price of Anarchy of at most 2.

Thanks to the above understanding, we obtain a much more general result with a much simpler proof.
We show that the PoA is upper-bounded by 2 for the competitive cascade game with an arbitrary number
of players and any graph structure with submodular activation functions fv(·). We formally state this
result in Theorem 1. Moreover, by utilizing the result of Roughgarden in [19], we show that our bound
not only holds for the PoA under pure or mixed Nash equilibria but also for the coarse PoA. We also show
that the proposed PoA bound is tight.

1 Throughout the paper, to simplify the distinction of roles, we consistently use “she” to denote individuals in the
social network and “he” to denote the players, i.e., the companies.

2 In fact, they proved that the PoA upper bound holds in a more general model, which we will discuss in Section 2.
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Theorem 1. The coarse PoA is upper-bounded by 2 under the switching-selection model with concave
switching functions and linear selection functions.3

Our result on the PoA bound holds under a generalized version of the framework used in [11]. First,
and most importantly, our model allows for an arbitrary number of players. Second, we allow multiple
players to target the same individual and allow each player to put multiple units of budget on the same in-
dividual.4 This generalization enlarges the strategy space from sets to multisets and somewhat complicates
the analysis of our model. Third, we associate each individual in the network with a weight measuring the
importance of the node. Fourth, we generalize the adoption functions defined on the fraction of already
adopting neighbors to arbitrary set functions defined on the individuals who have previously adopted the
product.

1.1 Related Work

Our work is mainly motivated by [11], lying at the intersection of influence analysis in social networks
and traditional game theory research. The model in [11] and the differences compared to our work are
discussed in detail above and in Section 2.

Submodularity has been a recurring topic in the study of diffusion phenomena [17, 14, 12, 2, 4, 5].
[14, 17] have shown that influence coverage is submodular under local dynamics with submodularity.
The submodularity of global influence coverage can be utilized to design efficient algorithm for either
maximizing the influence [14] or minimizing the influence of the competitors [12]. Submodularity has
also been applied in the analysis of a competitive influence game by Bharathi et al. [2]. Bharathi et al. use
a similar approach as we do in this paper; they also bound the PoA bound by showing that the game is a
valid utility game. However, they analyze the competitive cascade game under a simpler diffusion model.
Under their model, a node adopts the product from the neighbor who first succeeds in activating her; a
continuous timing component ensures that this node is unique with probability 1.

In the proof for the PoA bound of the competitive cascade game, we are drawing heavily on previous
research on the PoA for valid utility games [22, 19, 3]. Vetta first showed that for a valid utility game,
the PoA for pure Nash equilibria is upper-bounded by 2 in [22]. Blum et al. and Roughgarden later
generalized Vetta’s result to the coarse PoA in [19, 3].

Several other game-theoretic approaches have been considered for competitive diffusion in social
networks [21, 1, 20, 10, 6]. [20] mainly focuses on the efficient computation of the Nash strategy instead
of the theoretical bound of the PoA. [6] focuses on studying the algorithmic problem of finding the best
response. Though [1, 21, 10] studied the competitive cascade game from a game-theoretic perspective,
they mainly focused on the existence of pure Nash equilibria. [1] mainly focuses on the existence of
pure Nash equilibria under a deterministic threshold model. [10] also tries to characterize the structure of
the pure Nash equilibria in the game. The PoA is studied in [21]; however, they studied the PoA bound
of pure Nash equilibria and used a deterministic diffusion model instead of the stochastic dynamics we
use in our work. In their model, the PoA is unbounded as in the Goyal-Kearns model with non-concave
switching functions. As noted by [4, 5], small differences in the diffusion model can lead to dramatically
different behaviors of the model.

2 Models and Preliminaries

In this section, we define basic notation, present the different models of diffusion and the N -player game,
and include other definitions of concepts used in our proof. In the game, the players allocate resources to

3 Similar to the result by Goyal and Kearns, our PoA upper bound extends to a more general model. We define this
more general model in Section 2, and state and prove the more general result in Section 3.

4 The model proposed by Goyal and Kearns [11] allows for multiple units of budget on the same individual, but the
proof does not explicitly cover this extension.
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the nodes in the graph G = (V,E) to win them as initial adopters of their products. Then, the adoption
of products propagates according to the local dynamics, described in detail in Section 2.1. The formal
definition of the game is presented in Section 2.3.

Throughout, we use the following conventions for notation. Players are typically denoted by i, j, k,
while nodes are u, v, w. For sets, functions, etc., the identity of a player is applied as a superscript, while
that of a node (and time step) is applied as a subscript. Vectors are written in boldface, including vectors
of sets; in particular, we frequently write S = (S1, . . . , SN ) for the vector of sets of nodes belonging to
the different players.

2.1 General adoption model

The general adoption model is a generalization of the switching-selection model described in Section 1.
Each node in G is in one of the N +1 states {0, 1, . . . , N}. A node v in state i > 0 means that individual
v has adopted the product of player i, while state 0 means that she has not adopted the product of any
player. In this case, we also say that v is inactive. Conversely, we say that node v is activated if she is
in one of the states i > 0. Initially, all nodes are inactive. The diffusion of the adoption of products is
a process described by nodes’ state changes. We assume that the process is progressive, meaning that a
node can change her state at most once, from 0 to some i > 0, and must remain in that state subsequently.

The diffusion process works in two stages. We call the first stage Seeding and the second stage Dif-
fusion. In the first stage, the initial seeds of all players are decided based on the budgets that each player
allocates to the nodes. The initial seeds are used as starting points for the diffusion stage. In the sec-
ond stage, the adoption propagates according to certain local dynamics based on the nodes who have
previously adopted the products.

Seeding stage: The strategy M i of player i is a multiset of nodes. We define αiv as the number of times
that v appears in player i’s multiset. For each node v ∈ V , if

∑N
i=1 α

i
v = 0, the initial state of node v is

0; otherwise, the initial state of node v is one of {1, 2, . . . , N} with probabilities (
α1

v

Zv
, . . . ,

αN
v

Zv
), where

Zv =
∑N
i=1 α

i
v is simply the normalizing constant. The decisions for different nodes are independent.

Thus, if no player selects a node, the node remains inactive. Otherwise, the players win the node as an
initial adopter with probability proportional to the number of times they select the node.

Diffusion stage: The important part of diffusion is the local dynamics deciding when a node gets influ-
enced, i.e., changes her state from 0 to i. Let Si be the set of nodes in state i. A node v who is still in state
0 changes into state 1, . . . , N, 0 according to the probabilities

(h1v(S), . . . , h
N
v (S), 1−

N∑
i=1

hiv(S)).

We call hiv(S
1, . . . , SN ) the adoption function of node v for product i. It gives the probability that

a still inactive node v adopts product i given that Sj is the current set of nodes in state j. The adoption
functions must satisfy the following two conditions:

0 ≤ hiv(S) ≤ 1, ∀v ∈ V, i = 1, . . . , N∑N
i=1 h

i
v(S) ≤ 1, ∀v ∈ V.

We call Hv(S) =
∑N
i=1 h

i
v(S) the activation probability; it gives the probability that v adopts any

product and changes from state 0 to any state i > 0.
Equipped with the local dynamics of adoption, we still need to define in what order nodes’ states

are updated. In the general adoption model, we assume that an update schedule is given in advance to
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determine the order of updates. The update schedule is a finite sequence Q of nodes 〈v1, . . . , v`〉, of
length `. A node could occur multiple times in the sequence.

Nodes’ states are updated according to the order prescribed by the sequence. Let Sit be the set of
nodes in state i after the first t updates; Si0 is the seed set of player i resulting from the seeding stage. In
each round t, the state of node vt is updated according to the local dynamics of adoption and previously
activated nodes, namely St−1 = (S1

t−1, . . . , S
N
t−1). If node vt is already in state i > 0, she remains in

state i. Otherwise, she changes into state 1, . . . , N, 0 according to the probabilities

(h1v(St−1), . . . , h
N
v (St−1), 1−

N∑
i=1

hiv(St−1)).

The states of all other nodes remain the same. The updates in different rounds are independent. The
diffusion stage ends after the ` update steps. The prescribed update sequence makes this model different
from the previously studied Independent Cascade and Threshold Models. We discuss the difference and
some implications in more detail after defining the Threshold Model in Section 2.4.

2.2 Useful properties

We next identify three important properties that make the model more tractable analytically: (1) additivity
of the activation probability Hv , (2) competitiveness of the adoption function hv and (3) submodularity
of the activation function fv .

Definition 1. The total activation probability Hv(S) =
∑N
i=1 hv(S) is additive if and only if Hv can

be written as Hv(S) = fv(
⋃N
i=1 S

i) for some monotone set function defined on V . We call fv(S) the
activation function for v when Hv is additive.

Additivity implies that the probability for a node to adopt the product and change from inactive to
active only depends on the set of already activated nodes and not on which specific products they have
adopted. For example, the probability that one adopts a smartphone only depends on who has already
adopted one, independent of who is using iPhone and who is using Galaxy.

To simplify notation, we define S−i =
⋃
k 6=i S

k, and S−i = (Sk)k 6=i.

Definition 2. The adoption function hiv(S) for player i is competitive if and only hiv(S) ≥ hiv(Ŝ) when-
ever Ŝi ⊆ Si and S−i ⊆ Ŝ−i.

Competitiveness means that the adoption function for player i is monotone increasing in the set of
nodes that have adopted product i and monotone decreasing in the set of nodes that have adopted some
competitor’s products.5

Definition 3. The activation function fv is submodular if and only if for any two set S ⊆ T ⊆ V and any
node u ∈ V ,

fv(S ∪ {u})− fv(S) ≥ fv(T ∪ {u})− fv(T ).

5 This assumption is reasonable when the reputation of the product is already well-established. However, when a
new product comes out, the presence of competitors may help popularize the product, by increasing its overall
exposure or perceived importance or relevance. These effects could lead to more purchases even for one particular
company i. This subtle distinction is discussed more in Section 2.4.
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Submodularity of activation functions implies that the overall activation probability has diminishing
returns. It intuitively means that the first friend to buy and recommend a smartphone has more influence
than a friend who recommends it after many others.

Goyal and Kearns have shown in [11] that the switching-selection model with concave switching
functions and linear selection functions is a special case of the general adoption model with competitive
adoption functions and additive activation probabilities. In addition, due to the concavity of the switching
function fv , the activation functions in the general adoption model are also submodular. Therefore, we
have the following lemma:

Lemma 1. Every instance of the switching-selection model with concave switching functions and linear
selection functions is an instance of the general adoption model satisfying all three of the above proper-
ties.

Lemma 1 allows us to prove our PoA bound only for the general adoption model; it then implies Theo-
rem 1.

2.3 The game

The competitive cascade game is an N -player game on a given graph G = (V,E). The structure of the
graph as well as all adoption functions are known to all the players. Each player i is a company. The
strategy for each player i is a multiset M i of nodes; we use M = (M1, . . . ,MN ) to denote the strategy
vector for all players and αiv for the number of times that node v appears in M i.

Players’ strategies are constrained by their budgetsBi, in that they must satisfy |M i| ≤ Bi. We further
allow node-specific constraints requiring that αiv ≤ Ki

v for given node-specific budgets Ki
v ≤ Bi. These

may constrain players from investing a lot of resources into particularly hard-to-reach nodes; however,
the node-specific constraints mostly serve to simplify notation in some later proofs. We say that a strategy
M i is feasible if all of the above conditions are satisfied.

All players simultaneously allocate their budgets to the nodes of G. Given the choices that the players
make, the payoffs are determined by the general adoption model as the coverage of the player’s product
among the individuals in G. Each node v in the graph is associated with a weight ωv ≥ 0, measuring the
importance of the node. The payoff function of player i is σi(M) = E[

∑
v∈Si

`
ωv], the expected sum of

weights from nodes having adopted i’s product after all ` update steps.
The social utility γ(S0) =

∑
i σ

i(M) is the sum of weights from nodes adopting any of the products.6

Notice that when the activation probabilities Hv are additive (Definition 1), γ(·) only depends on S0 =⋃N
i=1 S

i
0, the set of nodes activated after the seeding stage (but not on which company they chose).

To simplify notation, we define (M−k, M̃k) = (M1, . . . ,Mk−1, M̃k,Mk+1, . . . ,MN ), and in par-
ticular (M−k, ∅k) = (M1, . . . ,Mk−1, ∅,Mk+1, . . . ,MN ).

We say that a strategy profile M is a pure Nash equilibrium if no player has an incentive to change
his strategy. Namely, for any player i,

σi(M) ≥ σi(M−i, M̃ i) for all feasible M̃ i.

Let OPT be a strategy profile maximizing the social utility function, and EQpure the set of all pure Nash
equilibria. The price of anarchy of pure Nash equilibria is defined as follows:

Pure Price of Anarchy = max
M∈EQpure

γ(OPT)

γ(M)
.

6 This definition implicitly assumes that the product carries a value for those who adopt it; thus, society is better off
when more people adopt at least one product.
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However, the competitive cascade game could have no pure Nash equilibrium [21]. Thus, we extend our
analysis to more general equilibrium concepts. A coarse (correlated) equilibrium of a game is a joint
probability distribution P with the following property [19]: if M is a random variable with distribution
P, then for each player i, and all feasible M̂ i:

EM∼P[σ
i(M)] ≥ EM−i∼P−i [σi(M−i, M̂ i)].

Similar to the PoA for pure Nash equilibria, the coarse price of anarchy is defined as

Coarse Price of Anarchy = max
P∈EQcoarse

γ(OPT)

EM∼Pγ(M)
,

where EQcoarse is the set of all coarse equilibria.

2.4 The Threshold Model

Our analysis will be based on a careful reduction of the general adoption model to the general threshold
model defined in [14, 15]. In the general threshold model (with N = 1), every node v in the network has
an associated activation function f̂v(·). At the beginning of the process, each node draws a threshold θv
independently and uniformly from [0, 1]. Starting from an initially active set S0, a node becomes active
at time t (i.e., is a member of St) if and only if f̂v(St−1) ≥ θv . The process ends when for one round, no
new node has become active (which is guaranteed to happen in at most |V | steps). If t is the time when
this happens, the influence of the initial set S0 is defined as σω(S0) = E[

∑
v∈St

ωv]. In a beautiful piece
of work, Mossel and Roch established the following theorem about the function σω:

Theorem 2 (Mossel-Roch [17]). If fv is monotone and submodular for every node v in the graph, then
σω is monotone and submodular under the general threshold model.

Given the apparent similarity between the general adoption model and the general threshold model
(say, for N = 1), it is illuminating to consider the ways in which the models differ, and the implications
for the competitive cascade game. In the general adoption model, a sequence of nodes to update is given,
and nodes only consider changing their state when they appear in the sequence. By contrast, in the general
threshold model, nodes consider changing their state in each round.

So at first, it appears as though a sequence repeating |V | times a permutation of all |V | nodes would
allow a reduction from the threshold model to the adoption model. However, note that in the adoption
model, each node makes an independent random choice whether to change her state in each round,
whereas in the threshold model, the random choices are coupled via the threshold θv , which stays constant
throughout the process. In particular, if fv(S0) > 0, then a node appearing often enough in the update
sequence will eventually be activated with probability converging to 1, whereas this need not be the case
in the general threshold model.

The increase in activation probability caused by multiple occurrences in the update sequence has
powerful implications for the competitive game. It allows us to establish rather straightforwardly the
competitiveness (Definition 2) of each player’s objective function, and the submodularity (Definition 3)
of the social utility. By contrast, Borodin et al. [4] show that both properties fail to hold for most natural
definitions of competitive threshold games. At the heart of the counter-examples in [4] lies the following
kind of dynamic: At time 1, a node u recommends to v the use of a Galaxy phone, but fails to convince
v. At time 2, another node w recommends to v the use of an iPhone. If v decides to adopt a smartphone
at time 2, most natural versions of a threshold model (as well as under the general adoption model) allow
for an adoption of a Galaxy phone as well. This “extra chance” results in synergistic effects between
competitors, and thus breaks competitiveness. Under the model of [11], this problem is side-stepped. v
will only consider adopting a smartphone in step 2 when she appears in the sequence at time 2; in that
case, adoption of a Galaxy phone in step 2 will be considered independently of whether w has adopted
an iPhone. This observation fleshes out the discussion alluded to in Footnote 5.
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2.5 Valid utility games

A valid utility game [22] is defined on a ground set V with social utility function γ defined on subsets
of V . The strategies of the game are sets Si0 ⊆ V (it is possible that not all sets are allowed as strategies
for some or all players), and the payoff functions are σi for each player i. The social utility is defined
on the union of all players’ sets, γ(

⋃N
i=1 S

i
0). The definition requires that three conditions hold: (1) The

social utility function γ(·) is submodular; (2) For each player i, σi(S0) ≥ γ(S0) − γ(S−i0 , ∅i); (3)∑N
i=1 σ

i(S0) ≤ γ(S0).

3 Upper Bound on the Coarse Price of Anarchy

In this section, we present our main result: the upper bound on the coarse PoA with submodular activation
functions. We prove the upper bound on the PoA by showing that the competitive cascade game is a valid
utility game. We note, however, that the strategy space of our competitive cascade game consists of
multisets, whereas the standard definition of utility games has only sets as strategies. In order to deal with
this subtle technical issue, we use the following lemma, whose proof is given in the appendix.

Lemma 2. Let G = (G, {hiv}, {Ki
v}, {Bi}, {ωv}, Q) be an arbitrary instance of the competitive cascade

game. Then, there exists an instance Ĝ = (Ĝ, {ĥiv}, {K̂i
v̂}, {B̂i}, {ω̂v}, Q̂) with the same set of players,

and the following properties:

1.
∑N
i=1 K̂

i
v̂ ≤ 1 for all v ∈ V̂ . (At most one player is allowed to target a node, and with at most one

resource.)
2. For every player i, there are mappings µi, µ̂i mapping i’s strategies in G to his strategies in Ĝ and vice

versa, respectively, satisfying the following property: If for all i, either µi(M i) = M̂ i or µ̂i(M̂ i) =

M i, then for all i, σi(M) = σ̂i(M̂).

In particular, Lemma 2 implies that the social utility is also preserved between the two games, and
strategies M i are best responses to M j , j 6= i if and only if the M̂ i are best response to M̂ j , j 6= i.
(Otherwise, a player could improve his payoff in the other game by switching to µi(M i) or µ̂i(M̂ i).) In
this sense, Lemma 2 establishes that for every competitive cascade game instance, there is an “equiva-
lent” instance in which each node can be targeted by at most one player, and with at most one resource.
Therefore, we will henceforth assume without loss of generality that the strategy space for each player
consists only of sets.

In fitting the competitive cascade game into the valid utility game framework, the ground set of the
game is V , and the payoff function of player i is σi(S) = E[

∑
v∈Si

`
ωv]: the sum of weights from the

nodes v ∈ V in state i at the end of the updating sequence. Because of additivity, the social utility function
depends only on S0. That is, the following is well-defined: γ(S0) = γ(S0) =

∑
i σ

i(S0). Therefore, the
third condition of a valid utility game (sum boundedness) is satisfied trivially. Below, we will prove the
following two lemmas:

Lemma 3. Assume that for every node v, the total activation probability Hv(S) is additive, and the acti-
vation function fv(S) is submodular. Then, the social utility function γ(S0) is submodular and monotone.

Lemma 4. If for every node v and ever player k,Hv(·) is additive and hkv(·) is competitive, then for each
player i, we have σi(S0) ≥ γ(S0)− γ(S−i0 , ∅i).

Lemmas 3 and 4 together establish that the competitive cascade game is a valid utility game. Example
1.4 in [19] shows that the coarse PoA of valid utility games is at most 2 (Vetta [22] establishes the same
for the PoA), proving the following main result of our paper:
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Theorem 3. Assume that the following conditions hold:

1. For every node v, the total activation probability Hv(S) is additive.
2. For every node v, the activation function fv(S) is submodular.
3. For every player i and node v in the graph, the adoption function hiv(S) is competitive.

Then, the upper bound on the PoA (and coarse PoA) is 2 in the competitive cascade game.

By Lemma 1, the switching-selection model with concave switching functions and linear selection
functions is a special case of the general adoption model with competitive adoption functions, additive
activation probabilities and submodular activation functions. Therefore, Theorem 1 follows naturally as a
corollary of Theorem 3.

Proof of Lemma 3. We build an instance of the general threshold model whose influence coverage func-
tion σω(S0) is exactly the same as γ(S0). The idea is that for additive functions, the social utility does
not depend on which node chooses which company, so the game is reduced to the case of just a single
influence. The update sequence can be emulated with a time-expanded layered graph.

The time-expanded graph G` is defined as follows.7 For each node v of the original graph, we have
` + 1 nodes v̂0, v̂1, . . . , v̂` in G`. We use Lt = {v̂t | v ∈ V } to denote the set of nodes in layer t. The
activation functions are defined as follows:

1. In layer 0, f̂v̂0 ≡ 0 for every node v ∈ V .
2. In layer t, 1 ≤ t ≤ `, consider a node v with switching function fv . If v is the tth element of the

updating sequence (v = vt), we set

f̂v̂t(S) =

{
1 if v̂t−1 ∈ S
fv({u | ût−1 ∈ S}) otherwise;

otherwise we set

f̂v̂t(S) =

{
1 if v̂t−1 ∈ S
0 otherwise.

Finally, the total influence is defined as σω(S0) = E[
∑
v̂`∈Ŝ ωv], where Ŝ is the set of nodes activated

in the threshold model once no more activations occur. In the instance, each layer Lt emulates one update
in the original update sequence of the general adoption model.

For each node v̂t in the layered graph, fv̂t(S) is submodular and additive. The submodularity and
monotonicity for the 0-1 activation functions are trivially satisfied. For the nodes in the update sequence,
submodularity holds because we assumed the fv(S) to be submodular, and monotonicity follows because
the Hv(S) are additive.

Next, we show that γ(S0) = σω(S0), by using a straightforward coupling between the general thresh-
old model and the general adoption model. According to the construction of G`, the state changes for
all nodes except v̂t (where vt is the tth element of the updating sequence) are deterministic. Therefore,
we only need to draw the thresholds Θ = 〈θ1, θ2, . . . , θ`〉 for the ` nodes in the update sequence: they
are drawn independently and uniformly from [0, 1]. In the general adoption model, when updating the tth

node vt in the sequence, if node vt is still inactive, she becomes active if and only if fv(St−1) ≥ θt. If the
node is already activated, she remains activated in the same state. By induction on t, v ∈ St if and only if
v̂t ∈ Ŝ ∩ Lt. Thus, the outcomes of the two processes are the same pointwise over threshold vectors Θ:
γ(S0|Θ) = σω(S0|Θ). In particular, their expectations are thus the same.

Finally, Theorem 2 establishes the monotonicity and submodularity of σω(S0), and thus also γ(S0).

7 All activation information is encoded in the activation functions. Therefore, there is no need to explicitly specify
the edges of G`.
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Proof of Lemma 4. We begin by showing that under the assumptions of the lemma, σi(S0) ≤ σi(S−k0 , ∅k)
for all players k, i, k 6= i. To do so, we exhibit a simple coupling of the general adoption processes for
the two initial states S0 and (S−k0 , ∅k), essentially identical to one used in the proof of Lemma 1 in [11].
Notice that the activation functions are additive; therefore, we can combine all states k 6= i into one state,
which we denote by −i.

The activation process is defined by the way in which nodes decide whether to update their state, and
if so, to which new state. An equivalent way of describing the choice is as follows: for each step t of the
update sequence, we draw an independent uniformly random number zt ∈ [0, 1]. In step t, assuming that
node vt is still in state 0, she changes her state to:

– state i if zt ∈ [0, hivt(St−1)).
– state −i if zt ∈ [hivt(St−1), fvt(

⋃N
j=1 S

j
t−1)).

– state 0 otherwise.

To couple the two random processes with starting conditions (S−k0 , ∅k) and S0, we simply choose
the same values zt for both. Let Xj

t denote the set of nodes in state j, j ∈ {i,−i, 0} after t updates with
starting condition (S−k0 , ∅k). Y jt is defined analogously, with starting condition S0.

Conditioned on any choice of (z1, . . . , z`), a simple induction proof using competitiveness of the hiv
and monotonicity of the fv shows that for each time t, Xi

t ⊇ Y it , X0
t ⊇ Y 0

t , and thus also X−it ⊆ Y −it .
Therefore, at the end of the update sequence, the desired inequality holds pointwise over (z1, . . . , z`), and
in particular in expectation, as claimed. Finally, having established that σi(S0) ≤ σi(S−k0 , ∅k), we use it
in the following calculations:

γ(S0)− γ(S−i0 , ∅i) =
∑
k

(σk(S0)− σk(S−i0 , ∅i))

= σi(S0) +
∑
k 6=i

(σk(S0)− σk(S−i0 , ∅i))

≤ σi(S0).

4 Tightness of the PoA Upper Bound

We give an instance of the competitive cascade game in the (more restrictive) switching-selection model
to show that our upper bound of 2 for the PoA in Theorem 3 is tight.

Let N be the number of players. The graph consists of a star with one center and N leaves, as well as
N isolated nodes. Each player has only one unit of budget, and the update sequence is any permutation
of the nodes in the star graph. The switching functions are the constant 1 for all nodes in the graph, which
implies that if a node has any neighbor who has adopted the product, the node also adopts the product.
The selection functions are simply the fraction of neighbors who have adopted the product previously.
Under this instance, the unique Nash equilibrium has every player allocating his unit of budget to the
center node of the star graph. By placing the budget at the center node, the expected payoff for each
player is N+1

N , while placing it on any other node at most leads to a payoff of 1. However, the strategy
that optimizes the social utility is to place one unit of budget at the center node of the star graph while
placing all others at the isolated nodes. Thus, the PoA (and also Price of Stability) is 2N

N+1 . As N goes to
infinity, the lower bound on the PoA tends to 2. Therefore, we have proved the following proposition:

Proposition 1. The upper bound of 2 on the PoA (and thus also coarse PoA) is tight for the competitive
cascade game even for the simpler switching-selection model.
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5 Conclusion and Future Work

We have studied the efficiency of resource allocation at equilibria of the competitive cascade game in
terms of the Price of Anarchy (PoA). We have shown that an improved bound compared to [11] follows
from several well-understood and general phenomena. This cleaner approach has led to a simpler proof
of a more general result: for the N -player competitive cascade game, the coarse PoA is upper-bounded
by 2 under any graph structure. We have also shown that this bound is tight.

It is open whether the same (or a slightly weaker) bound can be guaranteed without the assumption of
submodularity of the activation functions (but assuming competitiveness and additivity). The techniques
from [11] can be generalized to give an upper bound of 2N in this case, but do not directly yield any
better bounds.

At a more fundamental level, it would be desirable to broaden the models considered for competitive
cascades. Most positive results on either algorithmic questions or the PoA — the present one included
— rely on submodularity properties of the particular modeling choices. (That such properties are also
at the heart of the model of Goyal and Kearns is our main insight here.) It would be desirable to find
models for which positive results — algorithmic or game-theoretic — can be obtained without requiring
submodularity. Furthermore, most work on cascade models so far has assumed that nodes only adopt a
single product. In many cases, products may be partly in competition, but not fully so. One of the few
papers to consider a model with partial compatibility between products is [13]; an exploration of the
game-theoretic implications of such a model would be of interest.
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A Proof of Lemma 2

We restate Lemma 2 for convenience.

Lemma 2 Let G = (G, {hiv}, {Ki
v}, {Bi}, {ωv}, Q) be an arbitrary instance of the competitive cascade

game. Then, there exists an instance Ĝ = (Ĝ, {ĥiv}, {K̂i
v̂}, {B̂i}, {ω̂v}, Q̂) with the same set of players,

and the following properties:

1.
∑N
i=1 K̂

i
v̂ ≤ 1 for all v ∈ V̂ . (At most one player is allowed to target a node, and with at most one

resource.)
2. For every player i, there are mappings µi, µ̂i mapping i’s strategies in G to his strategies in Ĝ and vice

versa, respectively, satisfying the following property: If for all i, either µi(M i) = M̂ i or µ̂i(M̂ i) =

M i, then for all i, σi(M) = σ̂i(M̂).

Proof. Given G, we construct Ĝ as a game on a graph with three layers.

Nodes: The first layer contains, for each node v ∈ V and player i, a set of Ki
v new nodes V iv =

{v1, . . . , vKi
v
}. The second layer of Ĝ contains, for each node v ∈ V , one node v′ connected to

all nodes in V iv . The third layer is a copy of the original graph G.
Node Budgets: For player i and any node v ∈ G, we set K̂i

v̂ = 1 for all nodes v̂ ∈ V iv , and K̂i
v̂ = 0 for

all other nodes (including all nodes in layers 2 and 3). In other words, player i may only target nodes
that are in V iv for some v ∈ G.

Budgets: We set B̂i = Bi, for all players i.
Weights: We set ω̂v ≡ 0 for all nodes in the first layer. If a node v appears (at least once) in Q, then we

set ω̂v = ωv in the third layer and ω̂v′ = 0 in the second layer. If v does not appear in Q, then we set
ω̂v = 0 in the third layer and ω̂v′ = ωv in the second layer. Thus, players are interested in influencing
nodes in the second or third layer, depending on whether the node can be influenced via the update
sequence, or must be influenced by direct targeting.

Adoption Functions: Different adoption functions are used for the nodes in different layers:
1. In layer 1, ĥiv̂(·) ≡ 0 for any player i and node v̂.
2. In layer 2, for a player i and node v,

ĥiv′(S) =

{
0 if

⋃N
k=1(S

k ∩ V kv ) = ∅
|Si∩V i

v |∑
k |Sk∩V k

v |
otherwise.

3. To simplify notation, we define Ai = {v ∈ V |v ∈ Si or v′ ∈ Si}. Then in layer 3, for player i
and node v,

ĥiv(S) =


0 if v′ ∈ Sj for some j 6= i

1 if v′ ∈ Si

hiv(A
1, . . . , AN ) otherwise.

Notice that the game Ĝ satisfies competitiveness, additivity and submodularity whenever the game G
satisfies all these three properties.

Update Sequence: The update sequence is Q̂ = 〈v′1, v′2, . . . , v′|V |, v1, . . . , v`〉, where Q = 〈v1, . . . , v`〉
is the update sequence of the original instance and v′1, v

′
2, . . . , v

′
|V | are all the nodes in the second

layer, in some arbitrary order. The first |V | updates in Ĝ emulate the seeding stage in G, and the
remaining ` updates emulate the update sequence Q.
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Payoffs and Social Utility: The players’ payoff functions σ̂i(M) and the social utility γ̂(M) are de-
fined as usual in terms of the other modeling parameters.

The mappings µi are defined as follows. Let M i be i’s strategy in G, characterized by the budgets αiv
that i puts on nodes v. For each node v ∈ V , we choose an arbitrary (but fixed) set M̂ i

v of αiv nodes in
V iv . Player i’s strategy is M̂ i = µ̂i(M i) =

⋃
v M̂

i
v . Conversely, we define µ̂i as follows: For any strategy

profile M̂ of Ĝ, and for each node v ∈ V , we set αiv = |M̂ i∩V iv |. µ̂i(M̂ i) is the strategy in which player
i puts αiv resources on node v, for all v.

The first claim of the lemma holds by definition. For the second claim, consider two strategy profiles
M and M̂ , such that for all players i, either M̂ i = µi(M i) or M i = µ̂i(M̂ i). We show that σ̂i(M̂) =
σi(M) for each player i. To do so, we exhibit a coupling of the random choices between the two games
G and Ĝ. The coupling is quite similar to the one used in the proof of Lemma 4.

For the seeding stage of G, an equivalent way of describing the choice is as follows: for each node
v ∈ V , we draw an independent uniformly random number zv ∈ [0, 1]. The state of node v is

– 0 if Zv =
∑N
i=1 α

i
v = 0,

– i > 0 if zv ∈
(∑i−1

j=1 α
j
v

Zv
,
∑i

j=1 α
j
v

Zv

]
.

Similarly, for the updates in the diffusion stage for both G and Ĝ, an equivalent way of describing the
update in step t is the following. Draw an independent uniformly random number zt ∈ [0, 1]. If node vt
is in a state i > 0, she retains her current state. Otherwise, she changes her state to

– i > 0 if zt ∈ [
∑i−1
j=1 h

j
vt(St−1),

∑i
j=1 h

j
vt(St−1)),

– 0 otherwise.

To couple the two random processes, we simply choose the same values zv = ẑtv′ and zt = ẑt+|V |,
where tv′ is the order of node v′ in the update sequence Q̂.

Since the strategy M̂ consists of sets instead of multisets, the seeding stage of Ĝ is deterministic. In
Ĝ, a node v is initially in state i > 0 if and only if player i selects her as a seed. Let Ŝi0 be the set of
activated nodes after the seeding stage with strategy profile M̂ . We have |Ŝi0 ∩ V iv | = αiv , for all players
i and nodes v.

Conditioned on any fixed choice of the zv (and thus ẑ1, . . . , ẑ|V |), we have S0 = Ŝ|V |, where S0 is
the vector of sets of nodes in state i after the seeding stage with strategy profile M , and Ŝ|V | is the vector
of sets of nodes in layer 2 of Ĝ in state i after the first |V | update steps with strategy profile M .

Finally, a simple induction proof over the ` steps of the update sequence Q shows that for each time t,
we have the following property: (1) if v appears in Q at least once before time step t, then v ∈ Sit if and
only if v ∈ Ŝit+|V |. (2) if v does not appear inQ before time step t, then v ∈ Sit if and only if v′ ∈ Ŝit+|V |.
Applying this result after all ` steps, we obtain that each node v appearing in Q has v ∈ Si` if and only if
v ∈ Ŝi`+|V |, and each node v not appearing in Q has v ∈ Si` if and only if v′ ∈ Ŝi`+|V |. Notice that the

corresponding nodes v or v′ in Ĝ are exactly the ones inheriting the weight of node v in G, implying that
the payoff of each player i is the same pointwise in G and Ĝ. Thus, each player’s expected payoff is also
the same in the two games, completing the proof.


