
A Decentralized Algorithm for Spectral

Analysis

David Kempe a,1 Frank McSherry b

aComputer Science Department, University of Southern California
bMicrosoft Research SVC

Abstract

In many large network settings, such as computer networks, social networks, or hy-
perlinked text documents, much information can be obtained from the network’s
spectral properties. However, traditional centralized approaches for computing eigen-
vectors struggle with at least two obstacles: the data may be difficult to obtain (both
due to technical reasons and because of privacy concerns), and the sheer size of the
networks makes the computation expensive. A decentralized, distributed algorithm
addresses both of these obstacles: it utilizes the computational power of all nodes
in the network and their ability to communicate, thus speeding up the computation
with the network size. And as each node knows its incident edges, the data collection
problem is avoided as well.

Our main result is a simple decentralized algorithm for computing the top k
eigenvectors of a symmetric weighted adjacency matrix, and a proof that it converges
essentially in O(τmix log2 n) rounds of communication and computation, where τmix

is the mixing time of a random walk on the network. An additional contribution of
our work is a decentralized way of actually detecting convergence, and diagnosing
the current error. Our protocol scales well, in that the amount of computation
performed at any node in any one round, and the sizes of messages sent, depend
linearly on the degree of the node, polynomially on k, but not at all on the (typically
much larger) number n of nodes. To achieve independence of n, the coordinates of
the computed eigenvectors are held locally by the nodes to which they correspond,
enabling many eigenanalyses without distributing complete global state.

Key words: Eigenvectors, Spectral Analysis, Decentralized Algorithm, Markov
Chain, Large Networks

Email addresses: clkempe@usc.edu (David Kempe), mcsherry@microsoft.com
(Frank McSherry).
1 Work done while the author was supported by an NSF Graduate Fellowship

Preprint submitted to Elsevier Science 28 March 2006

1 Introduction

One of the most stunning trends of recent years has been the emergence of
very large-scale networks. A major driving force behind this development has
been the growth and wide-spread usage of the Internet. The structure of hosts
and routers — in itself a large network — has facilitated the growth of the
World Wide Web, consisting of billions of web pages linking to each other. This
in turn has allowed or helped users to take advantage of services such as In-
stant Messaging (IM) or various sites such as Friendster, Orkut, or BuddyZoo
to explore their current social network and develop new social ties. Beyond
Internet-based applications, a large amount of effort is now being focused on
structures and applications of decentralized Peer-to-Peer (P2P) networks [1–
4].

In all of these cases, the (weighted) network structure contains much informa-
tion that could be beneficial to the nodes. For the router graph of the Internet
or P2P networks, we may be interested in sparse cuts, as these may lead to
network traffic congestion, or — in the extreme case — network partitioning.
For linked web pages, most useful measures of relevance or relatedness (such
as PageRank [5] or hub and authority weights [6]) are defined in terms of the
eigenvectors of the network’s adjacency matrix. In social networks, individuals
may be interested in questions such as: Is there a natural clustering among
my friends? Which two of my friends are most likely to be compatible, and
should therefore be introduced? Which of my friends belong to social circles
different from mine, and could therefore introduce me to new people?

For all of the above questions, good solutions can be obtained by spectral anal-
ysis of the underlying graph structure, as nodes on different sides of a sparse
cut tend to have very different entries in the second eigenvector [7]. In addi-
tion, several recent results have also shown how to use spectral techniques for
clustering [8–10], characterization [6,11,12], and recommendation/prediction
[13].

When trying to apply these techniques to the large network settings described
above, one encounters several difficulties. First and foremost, the very size of
the networks may be prohibitively large for (efficient, but superlinear) spectral
algorithms. Second, the actual network data may be difficult to collect. This
may be a result of either technological obstacles (such as implementing an
efficient web crawler), or of privacy concerns: users of a P2P network may
want to keep their identity concealed, and users of IM or other social network
systems may be reluctant to share their social connections.

A solution to both of these problems is to perform the computation in the
network. This leverages the computational power of the individual nodes. At

2

the same time, nodes only communicate and share data with their neighbors
in the network, which may go a long way toward alleviating privacy concerns.
Last but not least, a decentralized design may be more desirable solely on the
grounds that it does not offer a single point of failure, and the system as a
whole can continue to function even when many of the nodes fail.

1.1 Our Contributions

We present a decentralized algorithm for computing eigenvectors of a sym-
metric matrix, and singular vectors of arbitrary matrices (corresponding to
the adjacency matrices of undirected resp. directed graphs). We assume that
associated with each edge of the network is a weight aij, which is known to
both endpoints. This weight may be the bandwidth available between two
machines, the number of links between two web pages, or an estimate of the
strength of a social tie between two individuals.

Our algorithm considers each node of the network as an independent computa-
tional entity that can communicate with all of its neighbors. (This assumption
is certainly warranted for social networks, P2P networks, or the autonomous
systems in the Internet; it can also be simulated fairly easily for web graphs.)
The sizes of messages passed between nodes, as well as the computation per-
formed at each node, are nominal; when computing the k principal eigenvectors
(or singular vectors), they are O(k3) in each round. The number of rounds to
achieve error ε is O(log2(n/ε) · τmix(G)), where τmix(G) denotes the mixing
time of the random walk on the network G. As many of the above-mentioned
networks have good expansion (either by design or empirical observation), this
time will essentially be logarithmic in the number n of nodes, hence exponen-
tially faster than the centralized algorithms for spectral analysis.

Our algorithm is based on a decentralized implementation of Orthogonal Iter-
ation, a simple method for computing eigenvectors. Let A = (aij) denote the
weighted adjacency matrix of the graph under consideration. In the Orthogo-
nal Iteration method, k random vectors are chosen initially. In each iteration,
all vectors are first multiplied by A; then, the resulting vectors are orthonor-
malized, and serve as the starting vectors for the next iteration. We show
how to approximately implement both the multiplication and orthogonaliza-
tion phases of an iteration in a decentralized fashion. As this implementation
introduces additional errors, we analyze how errors propagate through future
iterations.

Our analysis of a single orthogonal iteration shows that the error with respect
to a centralized implementation drops to ε within time O(log 1

ε
· τmix). One

feature of our approach is that nodes need not (and usually do not) know the

3

entire network structure, and in particular will usually not know the value of
τmix. Hence, we also show how nodes can detect convergence to within error ε
in a decentralized way without more than a constant factor in overhead.

1.2 Applications

We elaborate briefly on some of the previously mentioned potential applica-
tions of spectral methods in a decentralized setting. We restrict our discussion
to applications where nodes can make decisions or draw inferences locally, by
comparing their own k-tuples to those of their neighbors. This precludes more
global uses of eigenvectors, including the prediction of non-existing links (ex-
cept perhaps when the two nodes are at distance 2, and the comparison could
thus be performed by a common neighbor).

1.2.1 Network Engineering

One of the main challenges in designing and maintaining networks is to ensure
a high bandwidth for concurrent flows between arbitrary sources and sinks.
This usually involves detecting bottlenecks, and removing them by increasing
the bandwidth along bottleneck edges, or by adding more edges. Bottlenecks
can often be detected by considering the principal eigenvectors of the network’s
adjacency matrix, as the components of nodes on different sides of a sparse
cut tend to have different signs in these eigenvectors.

More formally, by combining the Theorem of Leighton and Rao [14], on
the maximum amount f ∗ of flow that can be concurrently routed between
source/sink pairs (si, ti), with results relating the expansion of a graph to the
second-largest eigenvector of its Laplacian matrix L, maximum concurrent flow

and eigenvalues relate as follows: O(nλn−1(L)
log n

) ≤ f ∗ ≤ O(n
√

λn−1(L)). Hence,
to increase the amount of flow that can be concurrently sent, it suffices to
increase λn−1(L) — or equivalently, to decrease the second-largest eigenvalue
of I − L.

One approach to attempt to minimize λ2(I − L) is to consider the eigenvalue

characterization λ2(I−L) = max~x⊥~x1

~xT (I−L)~x
~xT ~x

, where ~x1 denotes the principal
eigenvector of I −L. The second eigenvector is the ~x attaining the maximum.
By increasing aij for nodes i, j with opposite signs in the vector ~x (and decreas-
ing aij for nodes with equal signs), the ratio on the right-hand side is reduced,
corresponding to the above intuition that the bandwidth should be increased
between nodes with different signs in their eigenvector entries. Notice that this
will not necessarily reduce λ2(I − L), as the maximum may be attained by a
different vector ~x now. However, at worst, this is a good practical heuristic; in

4

fact, we conjecture that by extending this technique to multiple eigenvectors,
λ2(I − L) can be provably reduced. As all non-zero entries of I − L coincide
with non-zero entries of A, they correspond to edges of the network, and the
computation can thus be performed by our decentralized algorithm.

1.2.2 Social Engineering and Weak Ties

The importance of spectral methods in the analysis of networks in general, and
social networks in particular, results from the fact that they assign to each
point a vector in Rk for some small k, and that proximity in this space Rk

corresponds to a similarity of the two nodes in terms of their positions within
the network. For social networks, this means that individuals with similar (or
compatible) social circles will be mapped to close points.

A first application of this observation would lie in link prediction or “social
engineering”: introducing individuals who do not know each other (do not
share an edge), even though their mappings into Rk are close. This requires
the existence of a node to observe the proximity, for instance a “common
friend” (a node adjacent to both); a more sophisticated solution might let a
node broadcast its k-dimensional vector to other nodes, and let them choose
to contact this possibly compatible node (with small inner product of the two
vectors [13]).

A second, and perhaps more interesting, application is the detection of weak
ties. Sociologists have long distinguished between “strong” and “weak” social
ties — see the seminal paper by Granovetter [15] on the subject. The no-
tions of weak and strong ties refer to the frequency of interaction between
individuals, but frequently coincide with ties between individuals of similar
resp. different social circles. The distinction of social ties into different classes
is important in that [15] reports that a disproportionately large fraction of
employment contracts are the result of weak tie interaction. One may expect
similar phenomena for other aspects of life. An individual may therefore want
to discover which of his ties are weak, in order to seek introduction to potential
employers, new friends, etc.

Using the mapping into Rk, we can define a precise notion of a weak tie,
by comparing the distance between the two endpoints of an edge. (A weak
tie between individuals will thus correspond intuitively to adjacent nodes on
different sides of a sparse cut in the sense discussed above.) What is more, the
two endpoints themselves can determine whether their tie is weak, and act
accordingly.

5

1.3 Related Work

For a general introduction to spectral techniques, see [16]. There has been
a large body of work on parallelizing matrix operations — see for instance
[17] for a comprehensive overview. These approaches assume a fixed topology
of the parallel computer which is unrelated to the matrix to be decomposed;
our approach, on the other hand, has a network of processors analyze its own
adjacency matrix.

Our work relates to other recent work that tries to infer global properties of a
graph by simple local processes on it. In particular, Benjamini and Lovász [18]
show how to determine the genus of a graph from a simple random walk-style
process.

Our implementation of Orthogonal Iteration is based on a recent decentralized
protocol for computing aggregate data in networks, due to Kempe, Dobra, and
Gehrke [19]. Here, we show how to extend the ideas to compute significantly
more complex properties of the network itself.

Both the above-mentioned paper [19] and our paper draw connections between
computing the sum or average of numbers, and the mixing speed of random
walks. In recent work, Boyd et al. [20,21] have made this connection even
more explicit, showing that the two are essentially identical under additional
assumptions.

The equivalence between averaging and Markov Chains suggests that in order
for these decentralized algorithms to be efficient, they should use a Markov
Chain with as small mixing time as possible. Boyd, Diaconis, and Xiao [22]
show that the fastest mixing Markov Chain can be computed in polynomial
time, using semi-definite programming. For the special case of random ge-
ometric graphs (which are reasonable models for sensor networks), Boyd et
al. [23] show that the fastest mixing Markov Chain mixes at most by a con-
stant factor faster than the random walk, in time Θ(r−2 log n) (where all n
points are randomly placed in a unit square, and considered adjacent if they
are within distance r). In essence, this shows that slow convergence is inherent
in decentralized averaging algorithms on random geometric graphs.

2 The Algorithm

We consider the problem of computing the eigenvectors of a weighted graph,
where the computation is performed at the nodes in the graph. Each node has
access to the weights on incident edges, and is able to communicate along edges

6

of non-zero weight, exchanging messages of small size. The goal is for each
node to compute its value in each of k principal eigenvectors. For simplicity,
we will assume that each node can perform an amount of computation and
communication proportional to its degree in each round.

2.1 Orthogonal Iteration

Our algorithm emulates the behavior of Orthogonal Iteration, a simple algo-
rithm for computing the top k eigenvectors of a (graph adjacency) matrix
A = (aij)i,j.

Algorithm 1 Orthogonal Iteration (A)

1: Choose a random n× k matrix Q.
2: loop
3: Let V = AQ.
4: Let Q = Orthonormalize(V).
5: end loop
6: Return Q as the eigenvectors.

Once the eigenvectors have been computed, it is easy to obtain from them the
projections of each node onto the eigenspace, as it is captured by the rows of
V .

Orthogonal Iteration converges quickly: the error in the approximation to the
true Q decreases exponentially in the number t of iterations, as characterized
by Theorem 3 below.

We adapt Orthogonal Iteration to a decentralized environment. Each node i
takes full responsibility for the rows of V and Q associated with it, denoted Vi

and Qi. The choice of a random matrix is easy to implement in a decentralized
fashion. Similarly, when the matrix Q is already known, then V = AQ can
be computed locally: each node j sends its row Qj to all of its neighbors;
then, node i can compute its row Vi as a linear combination (with coefficients
aij) of all vectors Qj received from its neighbors j. The key aspect of the
decentralization is therefore how to perform the orthonormalization of V in a
decentralized way.

2.2 Decentralized Orthonormalization

The orthonormalization in Orthogonal Iteration is typically performed by com-
puting the QR factorization of V , i.e. matrices Q, R such that V = QR, the
k columns of Q are orthonormal, and the k× k matrix R is upper triangular.

7

Orthonormalization is thus performed by applying R−1 to V , yielding Q. If
each node had access to R, each could locally compute the inverse R−1 and
apply it to its copy of Vi. The resulting collection of vectors would then form
an orthonormal Q.

However, it is not obvious how to compute R directly. Therefore, we use the
fact that if K = V T V , then R is the unique k×k upper triangular matrix with
K = RT R. This holds because if Q is orthonormal, then QT Q is the identity
matrix, so

K = V T V = RT QT QR = RT R.

(Here, we are using the fact that the QR-factorization V = QR and the
Cholesky factorization K = RT R are both unique.) Once each node i has
access to the k × k matrix K, each can compute the Cholesky factorization
K = RT R locally, invert R, and apply R−1 to its row Vi.

Unfortunately, it is unclear how to provide each node with the precise matrix
K. Instead, each node computes an approximation to K. To see how, observe
that K =

∑
i V

T
i Vi. Each node i is capable of producing K(i) = V T

i Vi locally,
and if we can, in a decentralized manner, sum up these matrices, each node
can obtain a copy of K.

In order to compute this sum of matrices in a decentralized fashion, we employ
a technique proposed in [19]: the idea is to have the value (or, in this case,
matrix) from each node perform a deterministic simulation of a random walk.
Once this “random walk” has mixed well, each node i will hold roughly a πi

fraction of the value from each other node j (where πi denotes the stationary
probability for node i of the random walk). Hence, if we also compute πi and
divide by it, then each node calculates approximately the sum of all values.
(For matrices, all of this computation applies entry-wise.) Hence, let B = (bij)
be an arbitrary stochastic matrix, such that the corresponding Markov Chain
is ergodic and reversible 2 , and bij = 0 whenever there is no edge from i to j
in the network. 3 Then, the algorithm for summing is given by Algorithm 2
below.

At each node, the ratio Si

wi
converges to the the sum

∑
i K

(i) at essentially
the same speed as the Markov Chain defined by B converges to its stationary
distribution. The exact bound and analysis are given as Theorem 5.

Combining this orthonormalization process with the decentralized computa-

2 Recall that a Markov Chain is called reversible if it satisfies the detailed balance
condition πiBij = πjBji for all i and j.
3 A natural choice is the random walk on the underlying network, i.e. bij = 1

deg(i) .
However, our results hold in greater generality, and the additional flexibility may
be useful in practice when the random walk on the network itself does not mix well.

8

Algorithm 2 Push-Sum (B, (K(i)))

1: One node ı̂ starts with wı̂ = 1, all others with wi = 0.
2: All nodes set Si = K(i).
3: loop
4: Set Si =

∑
j∈N(i) bjiSj

5: Set wi =
∑

j∈N(i) bjiwj

6: end loop
7: Return Si

wi
.

tion of AV , we obtain the following decentralized algorithm for eigencompu-
tation, as executed at each node i:

Algorithm 3 DecentralizedOI (k)

1: Choose a random k-dimensional vector Qi.
2: loop
3: Set Vi =

∑
j∈N(i) aijQj.

4: Compute K(i) = V T
i Vi.

5: Set K = Push-Sum(B, K(i)).
6: Compute the Cholesky factorization K = RT R.
7: Set Qi = ViR

−1.
8: end loop
9: Return Qi as the ith component of each eigenvector.

We have been fairly casual about the number of iterations that should occur,
and how a common consensus on this number is achieved by the nodes. One
simplistic approach is to have the initiator specify a number of iterations, and
keep this amount fixed throughout the execution. A more detailed analysis,
showing how nodes can estimate the approximation error in a decentralized
way, is given in Section 3.3.

The main technical result of our paper is a careful analysis of the convergence
speed and properties of the DecentralizedOI algorithm 3. In order to state
the convergence properties formally, we describe the subspaces in terms of
projection matrices, instead of a specific set of basis vectors. This simplifies the
presentation by avoiding technical issues with ordering and rotations among
the basis vectors. For a subspace S with orthonormal basis {~b1, . . . ,~bk}, the

projection matrix onto S is PS =
∑

i
~bi

~bT
i . Our main theorem is then:

Theorem 1 Let A be a symmetric matrix, and λ1, λ2, . . . its eigenvalues, such
that |λ1| ≥ |λ2| ≥ Let PQ denote the projection onto the space spanned
by the top k eigenvectors of A and let PQ′ denote the projection onto the
space spanned by the eigenvectors computed after t iterations of Decentralized
Orthogonal Iteration.

If DecentralizedOI runs Push-Sum for Ω(tτmix · log(kc
ε
· ‖A‖2)) steps in each of

9

its iterations, and ‖R−1‖2 is consistently less than c, then with high probability,

‖PQ − PQ′‖2≤O(|λk+1

λk

|t · n) + 3ε4t

Remark 2 (Vector and Matrix Norm Notation) For any probability dis-
tribution ~µ, we write ‖~x‖p,~µ = (

∑
i |xi|p ·µi)

1/p, and ‖~x‖∞,~µ = maxi |xi|. When
~µ is omitted, we mean the norm ‖~x‖p = (

∑
i |xi|p)1/p.

For vector norms ‖·‖a, ‖·‖b, the matrix operator norm of a matrix A is defined
as ‖A‖a→b = max‖~x‖a=1 ‖A~x‖b. We most frequently use ‖A‖2 := ‖A‖2→2. In
addition to the operator norms induced by Lp norms on vectors, we define
the Frobenius norm of a matrix A as ‖A‖F := (

∑
i,j a2

ij)
1/2. These two norms

relate in the following useful ways: for any two matrices A, B, we have that

‖A‖2 ≤ ‖A‖F ≤
√

rank(A)‖A‖2, and ‖AB‖F ≤ ‖A‖2‖B‖F .

3 Analysis

In this section, we analyze the convergence properties of our decentralized
algorithm, and prove Theorem 1. The proof must take into account two sources
of error: (1) The Orthogonal Iteration algorithm itself does not produce an
exact solution, but instead converges to the true eigenvectors, and (2) Our
decentralized implementation DecentralizedOI introduces additional error.

The convergence of Orthogonal Iteration itself has been analyzed extensively
in the past (Theorem 8.2.2 in [24]); the relevant results are stated as Theorem
3.

Theorem 3 Let PQ describe the projection onto the space spanned by the top
k eigenvectors of a symmetric matrix A, and let PQ′ be the projection onto the
space spanned by the approximate Q′ obtained after t iterations of Orthogonal
Iteration, starting from a uniformly random projection. With high probability,

‖PQ − PQ′‖2≤O(|λk+1

λk

|t · n)

Remark 4 Interpreted, this theorem implies that the space found by orthogo-
nal iteration is close to the true space, so the projections Vi = AQi are nearly
perfect. Furthermore, not many iterations are required to achieve good accu-
racy. To bring this error bound to O(ε), we need to perform t = log(n

ε
)/ log(| λk

λk+1
|)

iterations.

10

Notice that the bound of Theorem 8.2.2 in [24] characterizes the error in terms
of the tangent of the angle between the initial subspace and the span of the
top k eigenvectors. Here, we bound the tangent by O(n) with high probability,
having started from a uniformly random initial subspace. The probability is
not exponentially small, though one can make it so through repeated or parallel
application of the algorithm, as is common in the centralized setting. If a better
bound on the tangent of the angle between subspaces is available, e.g., if we
are starting from a solution that is known a priori to be nearly accurate, the
O(n) term can be replaced by a better bound.

For analyzing the second type of error — introduced by the inaccurate com-
putations of sums, we first analyze the error introduced by one iteration of
Push-Sum in Section 3.1, and then analyze the propagation of such errors
through multiple iterations of DecentralizedOI in Section 3.2.

3.1 Analysis of Push-Sum

We begin by analyzing the error introduced by using Push-Sum for adding
matrices instead of obtaining accurate sums. We define the mixing time τmix

of the Markov Chain associated with B in terms of the ‖·‖2 norm, namely as
the smallest t such that ‖~eT

i Bt − ~πT‖2 ≤ 1
2

for all i. Then, we can prove the
following theorem about the convergence speed of Push-Sum:

Theorem 5 Let St,i be the k × k matrix held by node i after the tth iteration
of Push-Sum, wt,i its weight at that time, and S the correct matrix. Define
M =

∑
i |S0,i| to be the matrix whose (r, c) entry is the sum of absolute values

of the initial matrices S0,i at all nodes i. Then, for any ε, the approximation

error is ‖ St,i

wt,i
− S‖F ≤ ε‖M‖F , after t = O(τmix · log 1

ε
) rounds.

The proof of this theorem rests mainly on Lemma 6 below, relating the ap-
proximation quality for every single entry of the matrix to the convergence of
Bt to the stationary distribution of B. In the formulation of the lemma, we
are fixing a single entry (r, c) of all matrices involved. We write xi = K(i)

rc , and
st,i = (St,i)rc.

Lemma 6 Let t be such that ‖~eT
j Bt−~π

~π
‖∞ ≤ ε

2+ε
for all j. 4 Then, for any node

i, the approximation error | st,i

wt,i
− ∑

j xj| at time t is at most ε
∑

j |xj|.

Proof. Let ~st and ~wt denote the vector of all st,i resp. wt,i values at time t.
Thus, ~s0 = ~x, and ~w0 = ~eı̂, for the special node ı̂. Then, it follows immediately

4 When we write a fraction of vectors, we mean the vector whose entries are the
component-wise fractions.

11

from the definition of Push-Sum that ~sT
t+1 = ~sT

t B, and ~wT
t+1 = ~wT

t B. By
induction, we obtain that ~sT

t = ~xT Bt =
∑

j xj · ~ejB
t, and ~wT

t = ~eT
ı̂ Bt.

Node i’s estimate of the sum at time t is st,i

wt,i
=

∑
j xj · (~ejBt)i

(~eı̂Bt)i
. Because both

the numerator and denominator converge to πi, the right-hand side converges

to
∑

j xj. Specifically, let t be such that ‖~eT
j Bt−~π

~π
‖∞ ≤ ε

2+ε
for all j. Then, a

straightforward calculation shows that 1− ε ≤ (~ejBt)i

(~eı̂Bt)i
≤ 1 + ε for all i, j.

Finally, by a simple application of the Triangle Inequality, we obtain that
| st,i

wt,i
− ∑

j xj| ≤ ε
∑

j |xj|, completing the proof.

The lemma gives bounds on the error in terms of the mixing speed of the
Markov Chain, as measured in the ‖·‖∞ norm. Most analysis of Markov Chains
is done in terms of the ‖·‖2,~π norm, or the total variation distance. For this
reason, we give the discrete time analogue of Lemma 2.4.6 from [25], which
relates ‖·‖∞ and ‖·‖2,~π for reversible Markov Chains.

Lemma 7 Let B be a stochastic matrix whose associated Markov Chain is
ergodic and reversible, with stationary probability ~π. Then, for any time t, we

have that maxi ‖~eT
i B2t−~πT

~π
‖∞ ≤

(
maxi ‖~eT

i Bt−~πT

~π
‖2,~π

)2
.

Proof. Substituting the definition of ‖·‖∞, and noticing that ~πT = ~eT
i
~1~πT ,

we can rewrite the quantity to be bounded as maxi,j ~eT
i (B2t − ~1~πT)~ej

~π
. Then,

it is easy to see that this quantity is equal to max‖~x‖1,~π=1 ‖(B2t −~1~πT)~x‖∞ (as
the maximum in the second version is attained when only one coordinate of
~x is non-zero). This is, by definition, the operator norm ‖B2t −~1~πT‖1,~π→∞.

Because B (and hence Bt) is stochastic with stationary probability ~π, we have
that ~πT ·Bt = ~πT , and Bt ·~1 = ~1. Furthermore, the fact that ~π is a probability
measure implies that ~πT~1 = 1, so we obtain that B2t − ~1~πT = (Bt − ~1~πT)2.
Now, applying the submultiplicativity of operator norms to B2t − ~1~πT gives
us that ‖B2t −~1~πT‖1,~π→∞ ≤ ‖Bt −~1~πT‖1,~π→2,~π · ‖Bt −~1~πT‖2,~π→∞.

For ease of notation, we write K = Bt −~1~πT . Because B satisfies the detailed
balance condition πibij = πjbji for all i, j, so does Bt (which can be shown
by a simple inductive proof). Therefore, K also satisfies the detailed balance
condition. Using the fact that ‖K‖1,~π→2,~π = max‖~x‖1,~π=1,‖~y‖2,~π=1

∑
i(K~x)iyiπi

(one direction of which is proved using the Cauchy-Schwartz Inequality, the
other by appropriate choice of ~x and ~y), the detailed balance property of

K yields ‖K‖1,~π→2,~π = ‖K‖2,~π→∞. Finally, ‖K‖1,~π→2,~π = maxi(
∑

j

K2
ij

πj
)1/2 =

maxi ‖~eT
i Bt−~πT

~π
‖2,~π, again by the detailed balanced condition.

By combining Lemma 6 and Lemma 7, we can prove Theorem 5.

12

Proof of Theorem 5. Given a desired approximation quality ε, we define
ε′ = ε

(2+ε)
. By definition of the mixing time τmix, the ‖·‖2 distance at time τmix

is at most ‖~eT
i Bτmix − ~πT‖2 ≤ 1

2
for any i. Therefore, by a simple geometric

convergence argument, at time t = O(log 1√
ε′
τmix) = O(log 1

ε
τmix), the error is

at most ‖~eT
i Bt − ~πT‖2 ≤

√
ε′, for any i.

By Lemma 7, maxi ‖~eT
i B2t−~πT

~π
‖∞ ≤ ε′ = ε

2+ε
. For any node i and each (r, c)

pair, Lemma 6 therefore shows that | (S2t,i)rc

w2t,i
− ∑

j xj| ≤ ε · ∑
j |xj| = εmrc.

Hence, we can bound the Frobenius norm

‖S2t,i − S‖F ≤
√∑

r,c ε2
∑

j m2
rc = ε‖M‖F ,

completing the proof.

3.2 Error of Orthogonal Iteration

The more challenging part is to analyze the effect of the errors introduced by
Push-Sum on the aggregation. In Section 3.1, we showed that the error for
each entry of the matrix K at each node i drops exponentially in the number
of steps that Push-Sum is run. Still, after any finite number of steps, each
node i is using a (different) approximation K̂i to the correct matrix K, from
which it computes R̂−1

i and then its new vector Qi. We therefore need to
analyze the effects that the error introduced into the matrix K̂i will have on
future (approximate) iterations, and show that it does not hinder convergence.
Specifically, we want to know how many iterations of Push-Sum need to be
run to make the error so small that even the accumulation over the iterations
of Orthogonal Iteration keeps the total error bounded by ε.

In order to bound the growth of error for the decentralized Orthogonal Iter-
ation algorithm, we first analyze the effects of a single iteration. Recall that
a single iteration, in the version that we use to decentralize, looks as follows:
It starts with an orthonormal matrix Q, determines V = AQ and K = V T V ,
and from this computes a Cholesky factorization K = RT R, where R is a k×k
matrix. Finally, the output of the iteration is Q′ = V R−1, which is used as
input for the next iteration.

The decentralized implementation will start from a matrix Q̂ which is per-
turbed due to approximation errors from previous iterations. The network
computes V̂ = AQ̂, and we can hence define K̂ = V̂ T V̂ . However, due to the
approximate nature of Push-Sum, node i will not use K̂, but instead use a
matrix K̂i = K̂ +Ei, for some error matrix Ei. Node i then computes R̂i such
that K̂i = R̂T

i R̂i, and applies R̂−1
i to its row V̂i of the matrix V̂ . Hence, the

resulting matrix Q̂′ has as its ith row the vector V̂iR̂
−1
i .

13

Lemma 8 Let Q and Q̂ be matrices where Q is orthonormal, satisfying the
bound ‖Q− Q̂‖F + εk ≤ (2‖A‖2‖R−1‖2)

−3. If Q′ and Q̂′ are respectively the
results of one step of Orthogonal Iteration applied to Q and Decentralized
Orthogonal Iteration applied to Q̂, and the number of steps run in Push-Sum
is t = Ω(τmix log(1/ε)), then

‖Q′ − Q̂′‖F ≤
√

k(2‖A‖2‖R−1‖2)
4(‖Q− Q̂‖F + εk)

Proof. The proof consists of two parts: First, we apply perturbation re-
sults for the Cholesky decomposition and matrix inverse to derive a bound
on ‖R−1 − R̂−1

i ‖2. Second, we analyze the effect of applying the (different)
matrices R̂−1

i to the rows of V̂ .

Throughout, we will be making repeated use of the relationship between the
matrix norms of A, V, R, K. Because V = Q′R, and V = AQ, we can use
the submultiplicativity of Matrix norms, together with the fact that Q and
Q′ are orthonormal (and hence have norm 1) to observe that ‖V ‖F ≤ ‖R‖F ,
‖V ‖2 ≤ ‖R‖2, and ‖V ‖2 ≤ ‖A‖2. Finally, because K = RT R, its norms satisfy
‖K‖2 = ‖R‖2

2, and ‖K‖F ≤ ‖R‖2
F .

The perturbation bound will have four steps, which respectively bound the
terms ‖K − K̂‖F , then ‖K − K̂i‖F , then ‖R− R̂i‖F , then ‖R−1 − R̂−1

i ‖2. We
start by applying the triangle inequality to ‖K − K̂‖F , followed by some re-
arrangement,

‖K − K̂‖F = ‖V T V − V̂ T V̂ ‖F

≤‖V T V − V̂ T V ‖F + ‖V̂ T V − V̂ T V̂ ‖F

≤‖V ‖2‖V T − V̂ T‖F + ‖V̂ ‖2‖V − V̂ ‖F .

= (‖V ‖2 + ‖V̂ ‖2)‖V − V̂ ‖F .

Next, we want to bound the distance between K and the approximation K̂i

used by node i. Because we chose the number t of iterations large enough,
Theorem 5 implies that ‖K̂i − K̂‖F ≤ ε‖M‖F , where M = (mrc)r,c denotes
the matrix with entries mrc =

∑
i |(V̂ T

i V̂i)rc|. Applying the Cauchy-Schwartz
Inequality after expanding the definition of ‖·‖F bounds ‖M‖F ≤ ‖V̂ ‖2

F , so

‖K − K̂i‖F ≤‖K − K̂‖F + ‖K̂ − K̂i‖F

≤ (‖V ‖2 + ‖V̂ ‖2)‖V − V̂ ‖F + ε‖V̂ ‖2
F .

We apply two well-known theorems to bound the propagation of errors in
the Cholesky factorization and matrix inversion steps. First, a theorem by

14

Stewart [26] states that if K = RT R and K̂ = R̂T R̂ are Cholesky factorizations
of symmetric matrices, then ‖R− R̂‖F ≤ ‖K−1‖2‖R‖2‖K̂ −K‖F . Applying
this theorem to our setting, using ‖R‖2 = ‖V ‖2

‖R− R̂i‖F ≤‖K−1‖2‖V ‖2((‖V ‖2 + ‖V̂ ‖2)‖V − V̂ ‖F + ε‖V̂ ‖2
F) . (1)

Now is a good time to reduce these terms somewhat. Recall that because
V̂ = V + A(Q̂−Q), we have that

‖V − V̂ ‖F ≤ ‖A‖2‖Q− Q̂‖F and ‖V̂ ‖2 ≤ ‖V ‖2 + ‖A‖2‖Q− Q̂‖2 .(2)

Recalling our assumption that ‖Q− Q̂‖F ≤ (2‖A‖2‖R−1‖2)
−3, and noting

that by submultiplicativity ‖A‖2‖R−1‖2 ≥ ‖AQR−1‖2 = ‖Q′‖2 = 1, we have

‖V − V̂ ‖F ≤ ‖A‖2/8 and ‖V̂ ‖2 ≤ ‖V ‖2 + ‖A‖2/8 . (3)

Introducing these bounds into (1), as well as ‖V ‖2 ≤ ‖A‖2 and ‖V̂ ‖2
F ≤ k‖V̂ ‖2

2,
followed by a sequence of rearrangement of terms, we bound

‖R− R̂i‖F ≤ ‖K−1‖2‖A‖3
2((17/8)‖Q− Q̂‖F + εk(9/8)2) (4)

≤ (17/8)‖K−1‖2‖A‖3
2(‖Q− Q̂‖F + εk) (5)

As ‖K−1‖2 = ‖R−1‖2
2, and using the lemma’s assumption on ‖Q− Q̂‖F + εk,

‖R− R̂i‖F ≤ (17/64)‖R−1‖−1
2 . (6)

As the final step in our perturbation bounds, we apply Wedin’s Theorem [27],
which states that for non-singular matrices R, R̂i,

‖R−1 − R̂−1
i ‖2 ≤ 1+

√
5

2
‖R− R̂i‖2 max{‖R−1‖2

2, ‖R̂−1
i ‖2

2}.

To bound ‖R̂−1
i ‖2, we use a perturbation bound on the singular values of a

matrix: σk(R) − σk(R̂i) ≤ ‖R− R̂i‖2. As σk(R) = ‖R−1‖−1
2 and σk(R̂i) =

‖R̂−1
i ‖−1

2 , we have that

‖R−1‖−1
2 − ‖R̂−1

i ‖−1
2 ≤ ‖R− R̂i‖2

Substituting our bound on ‖R− R̂i‖F , we obtain that

‖R−1‖−1
2 − ‖R̂−1

i ‖−1
2 ≤ 17

64
‖R−1‖−1

2

15

Rearranging these terms yields 47
64
‖R−1‖−1

2 ≤ ‖R̂−1
i ‖−1

2 , and reciprocating then

gives ‖R̂−1
i ‖2 ≤ 64

47
‖R−1‖2. Using this bound in Wedin’s Theorem, we obtain

‖R−1 − R̂−1
i ‖2≤

1 +
√

5

2
· 64

47
· ‖R−1‖2

2‖R− R̂i‖2

≤ 5‖A‖3
2‖R−1‖4

2 · (‖Q− Q̂‖F + εk).

In the second part of the proof, we want to analyze the effect obtained by each
node i applying its own matrix R̂−1

i to its row V̂i of the matrix V̂ . Notice that
this is a non-linear operation, so we cannot argue in terms of matrix products
as above. Instead, we perform the analysis on a row-by-row basis. We can
write Q′

i − Q̂′
i as

Q′
i − Q̂′

i = ViR
−1 − V̂iR̂

−1
i = Vi(R

−1 − R̂−1
i) + (Vi − V̂i)R̂

−1
i .

We let C be the matrix whose ith row is (Vi − V̂i)R̂
−1
i , and D the matrix

whose ith row is Vi(R
−1 − R̂−1

i). We bound the Frobenius norms ‖C‖F , ‖D‖F

separately. To bound ‖C‖F , observe that

‖C‖2
F =

∑
i

‖(Vi − V̂i)R̂
−1
i ‖2

2

≤
∑

i

‖Vi − V̂i‖2
2‖R̂−1

i ‖2
2

≤max
i
‖R̂−1

i ‖2
2 ·

∑
i

‖Vi − V̂i‖2
2

= max
i
‖R̂−1

i ‖2
2 · ‖V − V̂ ‖2

F

Similarly, to bound the Frobenius norm of D:

‖D‖2
F =

∑
i ‖Vi(R

−1 − R̂−1
i)‖2

2 ≤ ‖V ‖2
F ·maxi ‖R−1 − R̂−1

i ‖2
2.

We take square roots on both sides of these bounds, and combine them using
the Triangle Inequality, getting

‖Q′ − Q̂′‖F ≤‖V̂ − V ‖F ·max
i
‖R̂−1

i ‖2 + ‖V ‖F ·max
i
‖R−1 − R̂−1

i ‖2

Finally, inserting our bounds on ‖R̂−1
i ‖2 and ‖R−1 − R̂−1

i ‖2 yields that

16

‖Q′ − Q̂′‖F ≤‖A‖2‖Q̂−Q‖F · 64

47
‖R−1‖2

+5
√

k ‖A‖2‖A‖3
2‖R−1‖4

2(‖Q− Q̂‖F + εk)

≤ 7
√

k · ‖R−1‖4
2 · ‖A‖4

2 · (‖Q− Q̂‖F + εk),

completing the proof.

Proof of Theorem 1. Lemma 8 establishes that the approximation error
‖Q− Q̂‖F grows by at most a factor of

√
k · (2‖R−1‖2‖A‖2)

4 with each itera-
tion, plus an additional εk error. While this worst-case exponential growth is
worrisome, the initial error is 0, and ε decreases exponentially with the num-
ber of Push-Sum steps performed. In particular, if we perform Ω(tτmix log(kc

ε
·

‖A‖2)) steps of Push-Sum in each iteration, then by Theorem 5, the new error
introduced by the Push-Sum approximation in each iteration is at most δk,
with δ = (ε

2kc
1

‖A‖2)
4t.

As the matrices Q, Q̂ always satisfy the conditions of Lemma 8 (an easy proof
by induction), the total error introduced over all t iterations is

δk ·
t−1∑
i=0

(
√

k · (2‖R−1‖2‖A‖2)
4)i = O(δk · (

√
k · (2‖R−1‖2‖A‖2)

4)t). (7)

Substituting the value of δ shows that if ‖R−1‖2 ≤ c in each iteration, then
the difference ‖Q− Q̂‖F is bounded by ε4t after t iterations.

To transform this bound into the claimed bound on the difference in projec-
tions ‖PQ − P

Q̂
‖F , note that

‖PQ − P
Q̂
‖F = ‖QQT − Q̂Q̂T‖F

≤‖QQT −QQ̂T‖F + ‖QQ̂T − Q̂Q̂T‖F

≤ (‖Q‖2 + ‖Q̂‖2)‖Q− Q̂‖F

By the argument in the proof of Lemma 8, the first factor is at most 17/8 ≤ 3,
so that ‖PQ − P

Q̂
‖F ≤ 3ε4t. Finally, combining this bound with the one from

Theorem 3 completes the proof of Theorem 1.

The main assumption of Theorem 1, that ‖R−1‖2 is bounded, raises an inter-
esting point. ‖R−1‖2 becoming unbounded corresponds to the columns of Q
becoming linearly dependent, an event that is unlikely to happen outside of
matrices A of rank less than k. Should it happen, the decentralized algorithm
will deal with this in the same manner that the centralized algorithm does:
The final column of Q will be filled with garbage values. This garbage will

17

then serve as the basis for a new attempt at convergence for this column. The
difference between the centralized and decentralized approaches is precisely
which garbage is used. Clearly if the error is adversarial, the new columns of
Q could be chosen to be orthogonal to the top k eigenvectors, and correct
convergence will not occur.

Notice that even if ‖R−1‖2 is large for some value of k, it may be bounded for
smaller values k′. Orthogonal iteration is a nested process, meaning that the
results hold for k′ < k, where we examine the matrices restricted to the first k′

eigenvectors. This means that while we can no longer say that the final k− k′

columns necessarily track the centralized approach, we can say that the first
k′ are still behaving properly.

3.3 Detecting Convergence in Push-Sum

In our discussion thus far, we have glossed over the issue of termination by
writing “Run Push-Sum until the error drops below ε.” We have yet to address
the issue of how the nodes in the network know how many rounds to run. If the
nodes knew τmix, the problem would be easy — however, this would require
knowledge and a detailed analysis of the graph topology, which we cannot
assume nodes to possess.

Instead, we would like nodes to detect convergence to within error ε them-
selves. We show how to achieve this goal under the assumption that each node
knows (a reasonable upper bound on) the diameter diam(G) of the graph G.
In order to learn the diameter to within a factor of 2, a node may simply
initiate a BFS at the beginning of the computation, and add the length of the
two longest paths found this way.

Assume now that nodes know an upper bound d on the diameter, as well
as a target upper bound ε on the relative error. For the purpose of error
detection, the nodes, in addition to the matrices Si from before, compute
the sum of the non-negative matrices Ai, with (Ai)rc = |(Si)rc|. When the
nodes want to test whether the error has dropped below ε, they compute the
values amax

rc = maxi
(Ai)rc

wi
, amin

rc = mini
(Ai)rc

wi
, smax

rc = maxi
(Si)rc

wi
, and smin

rc =

mini
(Si)rc

wi
. (Notice that the maximum and minimum can be computed by using

flooding, and only sending one value for each position (r, c), as both operations
are idempotent.) The nodes decide to stop if the values for all matrix positions
(r, c) satisfy amin

rc ≥ 1
1+ε

amax
rc , and smax

rc − smin
rc ≤ ε

1+ε
amax

rc . Otherwise, the nodes
continue with Push-Sum.

We will show in Theorem 9 below that this rule essentially terminates when
the maximum error is less than ε. As the computation of the maximum and

18

minimum takes time Θ(diam(G)), testing the error after each iteration would
cause a slowdown by a multiplicative factor of Θ(diam(G)). However, the BFS
need only be performed every d steps, in which case at most an additional d
rounds are run, while the amortized cost is at most a constant factor. When-
ever d = Θ(diam(G)), the overall effect is only a constant factor.

For our theorem below, we focus only on one matrix entry (r, c), as taking
the conjunction over all entries does not alter the problem. We let xi denote
the value held by node i before the first iteration, and write si = (Si)rc,
and ai = (Ai)rc for the entries at the time under consideration. We define
amax, amin, smax, and smin in the obvious way. In line with the error analysis
above, we say that the error at node i is bounded by ε if | si

wi
−∑

j xj| ≤ ε
∑

j |xj|.
The error is bounded by ε if it is bounded by ε at all nodes i.

Theorem 9 (1) When the computation stops, the error is at most ε.
(2) After the number t of steps specified in Lemma 6 to obtain error at most

ε
2(1+ε)

, the computation will stop.

Notice that there is a gap of 1
2(1+ε)

between the actual desired error and the
error bound that ensures that the protocol will terminate. However, this is only
a constant factor, so only a constant number of additional steps is required
(after the actual error has dropped below ε) until the nodes actually detect
that it is time to terminate.

Proof. (1) When the computation stops, the stopping requirement ensures
that

amin≥ 1

1 + ε
amax (8)

smax − smin≤ ε

1 + ε
amax. (9)

Because
∑

j wj = 1, we obtain that
∑

j aj =
∑

j wj
aj

wj
is in fact a convex

combination of aj

wj
terms, and in particular amin ≤ ∑

i ai ≤ amax. Thus,

Inequality (8) implies that amax ≤ (1 + ε) · ∑
j aj.

Inequality (9) therefore implies that smax − smin ≤ ε
∑

j aj. The same
convexity argument, applied this time to

∑
j sj, as well as the facts that∑

j aj =
∑

j |xj| and
∑

j sj =
∑

j xj, now ensures that | si

wi
− ∑

j xj| ≤
ε · ∑

j |xj| for all nodes i, i.e. the desired error bound.
(2) For the second part, we first apply Lemma 6, yielding for all nodes i that

| ai

wi

−
∑
j

|xj|| ≤
ε

2(1 + ε)

∑
j

|xj| (10)

| si

wi

−
∑
j

xj| ≤
ε

2(1 + ε)

∑
j

|xj| (11)

19

By the Triangle Inequality and the above convexity argument,

amax − amin ≤ 2 ε
2(1+ε)

∑
j |xj| ≤ ε

1+ε
amax,

so the first stopping criterion is satisfied. Similarly,

smax − smin ≤ 2 ε
2(1+ε)

∑
j |xj| ≤ ε

1+ε
amax,

so the second criterion is met as well, and the protocol will terminate.

4 Conclusions

In this paper, we have presented and analyzed a decentralized algorithm for
the computation of a graph’s spectral decomposition. The approach is based
on a simple algorithm called Push-Sum for summing values held by nodes in
a network [19].

We have presented a worst-case error analysis; one that is far more pessimistic
than those performed in bounding the (similar) effects of floating point errors
on numerical linear algebra algorithms. Nonetheless, our analysis shows that
t iterations of orthogonal iteration can be performed without central control
in time O(t2τmix), where τmix is the mixing time of any Markov Chain on the
network under consideration.

We believe that our algorithm represents a starting point for a large class of
distributed data mining algorithms, which leverage the structure and partici-
pants of the network. This suggests the more general question of which data
mining services really need to be centralized. For example, Google’s primary
service is not the computation of Pagerank, but rather computing and serving
a huge text reverse-index. Can such a task be decentralized, and can a web
search system be designed without central control?

Above, we argue informally that one of the advantages of our algorithm is a
greater protection of nodes’ privacy. An exciting direction for future work is
to investigate in what sense decentralized algorithms can give formal privacy
guarantees.

The convergence of our algorithm depends on the mixing speed of the un-
derlying Markov Chain. For a fixed network, different Markov Chains may
have vastly different mixing speeds [22]. Boyd et al. [22] show how to com-
pute the fastest mixing Markov Chain by using semi-definite programming;
however, this approach requires knowledge of the entire network and is in-
herently centralized. In more recent work, Boyd, Ghosh, et al. [21], using the

20

techniques of this paper for distributed eigenvector computation, give a fully
decentralized implementation of a subgradient approximation algorithm for
convex optimization, and use it to compute a (nearly) fastest mixing Markov
Chain. Nevertheless, it would be interesting whether a simpler and more direct
approach based on the eigenvectors can be used to compute an approximately
fastest mixing Markov Chain more efficiently. Such an algorithm would have
applications to routing of concurrent flows (by removing bottlenecks), and
allow the network to “self-diagnose” and speed up future invocations of our
decentralized algorithm.

Another question related to self-diagnosis is the error estimate in the Push-
Sum algorithm. At the moment, we assume that all nodes know the diameter,
and can run an error estimation protocol after appropriately chosen intervals.
Is there a decentralized stopping criterion that does not require knowledge of
diam(G) or n?

Acknowledgments

We would like to thank Alin Dobra, Johannes Gehrke, Sharad Goel, Jon Klein-
berg, and Laurent Saloff-Coste for useful discussions. We would also like to
thank two anonymous referees for useful suggestions.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, in: Proc. ACM SIGCOMM Conference, 2001, pp. 161–172.

[2] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems, in: Proc. 18th IFIP/ACM Intl.
Conf. on Distributed Systems Platforms (Middleware 2001), 2001, pp. 329–350.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in: Proc. ACM
SIGCOMM Conference, 2001, pp. 149–160.

[4] B. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: An infrastructure for fault-
tolerant wide-area location and routing, Tech. Rep. UCB/CSD-01-1141, UC
Berkeley (2001).

[5] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine,
Computer Networks and ISDN Systems 30 (1998) 107–17.

[6] J. Kleinberg, Authoritative sources in a hyperlinked environment, Journal of
the ACM 46 (1999) 604–632.

21

[7] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and
its applications to graph theory, Czechoslovak Mathematical Journal 25 (1975)
619–633.

[8] R. Kannan, S. Vempala, A. Vetta, On clusterings: Good, bad and spectral, in:
Proc. 41st IEEE Symp. on Foundations of Computer Science, 2000, pp. 367–377.

[9] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm,
in: Proc. 14th Advances in Neural Information Processing Systems, 2002, pp.
849–856.

[10] F. McSherry, Spectral partitioning of random graphs, in: Proc. 42nd IEEE
Symp. on Foundations of Computer Science, 2001, pp. 529–537.

[11] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, R. Harshman, Indexing by
latent semantic analysis, J. of the American Society for Information Sciences
41 (1990) 391–407.

[12] D. Achlioptas, A. Fiat, A. Karlin, F. McSherry, Web search via hub synthesis,
in: Proc. 42nd IEEE Symp. on Foundations of Computer Science, 2001, pp.
500–509.

[13] Y. Azar, A. Fiat, A. Karlin, F. McSherry, J. Saia, Spectral analysis of data, in:
Proc. 33rd ACM Symp. on Theory of Computing, 2001, pp. 619–626.

[14] F. Leighton, S. Rao, Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms, Journal of the ACM 46 (1999) 787–832.

[15] M. Granovetter, The strength of weak ties, American Journal of Sociology 78
(1973) 1360–1380.

[16] F. Chung, Spectral Graph Theory, American Mathematical Society, 1997.

[17] K. Gallivan, M. Heath, E. Ng, B. Peyton, R. Plemmons, J. Ortega, C. Romine,
A. Sameh, R. Voigt, Parallel Algorithms for Matrix Computations, Society for
Industrial and Applied Mathematics, 1990.

[18] I. Benjamini, L. Lovász, Global information from local observation, in: Proc.
43rd IEEE Symp. on Foundations of Computer Science, 2002, pp. 701–710.

[19] D. Kempe, A. Dobra, J. Gehrke, Computing aggregate information using gossip,
in: Proc. 44th IEEE Symp. on Foundations of Computer Science, 2003, pp. 482–
491.

[20] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Analysis and optimization of
randomized gossip algorithms, in: Proc. 43rd IEEE Conference on Decision
and Control, 2004, pp. 5310–5315.

[21] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Gossip algorithms: Design, analysis
and applications, in: Proc. 24th IEEE INFOCOM Conference, 2005, pp. 1653–
1664.

[22] S. Boyd, P. Diaconis, L. Xiao, Fastest mixing markov chain on a graph, SIAM
Review 46 (2004) 667–689.

22

[23] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Mixing times for random walks
on geometric random graphs, in: Proc. 2nd SIAM Workshop on Analytic
Algorithms and Combinatorics, 2005.

[24] G. Golub, C. van Loan, Matrix Computations, 3rd Edition, Johns Hopkins
University Press, 1996.

[25] L. Saloff-Coste, Lectures on finite markov chains, in: Lecture Notes in
Mathematics 1665, Springer, 1997, pp. 301–408, École d’été de St. Flour 1996.

[26] G. Stewart, On the perturbation of LU and cholesky factors, IMA Journal of
Numerical Analysis 17 (1997) 1–6.

[27] P. Wedin, Perturbation theory for pseudo-inverses, BIT 13 (1973) 217–232.

23

