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ABSTRACT
We propose frameworks and algorithms for identifying com-
munities in social networks that change over time. Com-
munities are intuitively characterized as “unusually densely
knit” subsets of a social network. This notion becomes more
problematic if the social interactions change over time. Ag-
gregating social networks over time can radically misrepre-
sent the existing and changing community structure. In-
stead, we propose an optimization-based approach for mod-
eling dynamic community structure. We prove that find-
ing the most explanatory community structure is NP-hard
and APX-hard, and propose algorithms based on dynamic
programming, exhaustive search, maximum matching, and
greedy heuristics. We demonstrate empirically that the heuris-
tics trace developments of community structure accurately
for several synthetic and real-world examples.

1. INTRODUCTION
Social networks are the graphs of interactions between in-

dividuals, and play an important role in the dissemination of
information, innovations, or diseases. Edges can represent
social interactions, organizational structures, physical prox-
imity, or even more abstract interactions such as hyperlinks
or similarity. Social networks have attracted a large amount
of attention from epidemiologists [21, 25, 28], sociologists [5,
29, 38], biologists (animal interactions) [7, 6, 10, 30, 36], the
intelligence community (terrorism networks) [3, 23, 24], and
more recently also from computer scientists [1, 11, 14, 17,
18, 20, 22]. One of the most important questions in social
networks is the identification of “communities”, which are
loosely defined as collections of individuals who interact un-
usually frequently [12, 13, 16, 18, 27, 38]. The identification
of communities often reveals interesting properties shared
by the members, such as common hobbies, social functions,
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occupations, etc. In a more general setting, including hy-
perlinked documents such as the WWW, these properties
include related topics or common viewpoints, which has led
to a large amount of research on identifying communities in
the web graph or similar settings [15, 22].

In analyzing social networks, one property has until re-
cently been largely ignored: the fact that they tend to change
dynamically. When faced with dynamic social networks,
most studies would either analyze a snapshot of a single
point in time, or an aggregation of all interactions over a
possibly large time window. Both approaches may miss im-
portant tendencies of these dynamic networks; indeed, the
ongoing change of a network and its possible causes may be
among the most interesting properties to observe. Consider
the following simplistic scenario: individuals 1 and 2 are
observed to interact at every point in time, whereas individ-
ual 3 interacts with both of them about half of the time. If
the observation sequence is 〈{1, 2}, {1, 2, 3}, {1, 2}, {1, 2, 3}〉,
we may decide whether or not we consider individual 3 a
full member of the community. On the other hand, if the
sequence is 〈{1, 2}, {1, 2}, {1, 2, 3}, {1, 2, 3}〉, a much more
plausible explanation is that individual 3 joined the group
during the observation period.

The necessity to delve into the dynamic aspects of net-
work behavior may be clear, yet it would not be feasible
without the data to support such explicitly dynamic anal-
ysis. Rapidly growing electronic networks, such as emails,
web, blogs, and friendship sites, as well as mobile sensor
networks on cars and animals, provide an abundance of dy-
namic social network data that for the first time allow the
temporal component to be explicitly addressed in network
analysis.

Recently, Berger-Wolf and Saia [4] proposed a framework
for identifying communities in dynamic social networks, mak-
ing explicit use of temporal changes. Most communities tend
to evolve gradually over time (see, e.g., [2]), as opposed to
assembling or disbanding spontaneously. Thus, whenever
information about events in the social network is available,
it is desirable to use this temporal information in order to
identify not only communities with high intra-community
similarity, but also observe their persistence and develop-
ment over time.

In this paper, we propose a new framework for community
identification. We assume that time is discrete, and in each
time step, we observe social interactions in the form of sev-
eral complete subgraphs of individuals (not every individual
needs to be observed in each time step), or affiliations [34,



35]. Based on these observed groupings, we want to identify
“true” underlying communities and their developments over
time, so that most of the observed interactions can be ex-
plained by the inferred community structure. We pose this
question as a combinatorial optimization problem, based on
the observation that individuals tend to (1) not change their
“home community” too frequently [2], and (2) tend to inter-
act with the home community most of the time [38, p. 320](a
mathematically precise definition is given in Section 2).

After formulating the problem as an optimization problem
in this way, we show that it is NP-complete and even APX-
hard and present algorithms to (approximately) optimize
the community structure discovered. The algorithms are
based on the observation that we can separate out two sub-
problems: identifying which groups at time t will “become”
which other groups at time t+1, and subsequently assigning
individuals to groups. The latter part can be solved opti-
mally using Dynamic Programming. The former part has
a smaller search space, and is thus amenable to exhaustive
search in small data sets. For larger data sets, we propose a
set of greedy heuristics. These approaches are discussed in
more detail in Sections 3 and 4.

In order to evaluate our proposed algorithms and heuris-
tics, we consider synthetic data sets with known embedded
communities, as well as two social network data sets: the
well-known Southern Women data set [9, 13], capturing in-
teractions of a small group of women in 1933 in Natchez, TN
at multiple social gatherings, and the Grevy’s zebra data set
[36], capturing physical proximity within a zebra herd over a
period of time. Our evaluation consists of two parts: (1) the
framework, and (2) the algorithms. To evaluate the former,
we use (inefficient) exponential-time algorithms to find the
optimum solutions, which in turn necessitates a restriction
to small networks. Once we establish that our framework
leads to the identification of meaningful community struc-
ture, we evaluate more efficient approximate heuristics on
larger real-world networks. The very encouraging experi-
mental results are described in Section 5.

2. PRELIMINARIES
We model social networks as (undirected) graphs G =

(V, E). Following the motivation from social networks, the
vertices V will also be called individuals, and the edges
E interactions. To model dynamic interactions, we follow
and slightly extend the approach of Berger-Wolf and Saia
[4] and that of affiliation networks [38, Section 8]. There
is a set X = {i1, . . . , in} of individuals, and a sequence
H = 〈P1, P2, . . . , PT 〉 of observations. Each Pt is a collec-
tion of non-empty and pairwise disjoint sets gj,t ⊆ X, called
groups of individuals at time step t. The interpretation is
that, for a time step t, the individuals of a group gj,t were
observed interacting with each other, but not with the indi-
viduals of any other group gj′,t for j′ 6= j. Such a group may
correspond to a physical or virtual gathering of its members.
Notice that we do not require the Pt’s to be partitions; some
individuals may not be observed at all at certain times.

We stress that, in the terminology we are using, groups
and communities are not necessarily the same: groups cap-
ture only a snapshot of interaction at one point in time,
while communities are latent concepts which should explain
many of the actual observed interactions, though not neces-
sarily all of them.

Our framework is somewhat restrictive in the types of ob-

servations it can accommodate: only transitive interactions
are allowed. While there will certainly be scenarios in which
non-transitive interactions between group members happen
concurrently, such scenarios would make it much more dif-
ficult to give meaningful graph-theoretic interpretations of
“community”, and our definition will still capture many nat-
ural real-world scenarios. Extending the allowed observa-
tions to arbitrary graphs poses an interesting direction for
future research.

Figure 1: An example data set of 5 individuals and

6 time steps. Circles are individuals and are labeled

with their IDs, rectangles are groups. Communities

are identified by matching colors, and the affiliation

of an individual is shown by its color.

Figure 1 shows a sample data set of 5 individuals in 6
time steps. In this data set, individuals 0 and 1 are always
together in a group whenever both are present, while the
other individuals take turns joining the group of the first
two individuals.

2.1 Problem Formulation
Standard definitions of communities in social networks

rely on various measures of cohesiveness [26; 38, Section 7.6].
Notice, however, that identifying dense subsets statically is
trivial in our setting; after all, we assumed that each obser-
vation was a set of disjoint cliques. The interesting aspect of
our formulation, and the one that requires novel approaches,
is the temporal change in group membership.

In deriving an optimization formulation of community
identification, we make the following explicit assumptions
about the behavior of individuals:

1. In each time step, every group is a representative of a
distinct community. If two groups are present at the
same time, there is a reason they are separate and,
thus, represent distinct communities.

2. An individual is a member of exactly one community at
any one time. While the individual can change com-
munity affiliation over time, it is affiliated with only
one community at any given moment. Notice that this
does not preclude an individual from belonging to mul-
tiple communities over the course of the observation.
It requires that the individual, in each time step, de-
termines “which hat to wear today”.

3. An individual tends not to change its community affil-
iation very frequently.



4. If an individual does change its community affiliation
several times, it will usually be an oscillation among a
small number of communities, rather than promiscuity
among many. In other words, if an individual keeps
changing its affiliations among many different commu-
nities, then it is not a true member of any of those
communities.

5. An individual is frequently present in the group repre-
senting the community with which it is affiliated. It
rarely misses being with its community’s group, and
rarely is with other community’s groups. That is, indi-
viduals within a community interact more than those
in different communities.

We will use these properties to define an optimization
problem, in which we assign costs to deviation from the be-
haviors posited above. These costs can be intuitively mod-
eled as a graph coloring problem (albeit with a different
objective function from traditional graph coloring).

Our graph G has one individual vertex vi,t for every indi-
vidual i ∈ X and each time t. In addition, there is one group
vertex vg,t for every group g ∈ Pt

1. For each individual i and
time t ≤ T − 1, there is an edge from vi,t to vi,t+1. Finally,
we have an edge between vi,t and vg,t whenever i ∈ g at time
t. Figure 2 shows the graph model of the example described
in Figure 1. Here, the circles are individual vertices and the
squares are group vertices.

Figure 2: A sample graph model. Circles are in-

dividual vertices, and squares are group vertices.

Black circles are individuals unobserved at that

time.

We define a community interpretation of a graph G as a
vertex coloring f : V → N of G. The color of an individual
vertex vi,t at time step t represents the individual i’s com-
munity affiliation at time t. Similarly, the color of a group
vertex vg,t gives the community that g represents at time t.
Notice that this definition automatically ensures that each
individual belongs to exactly one community in each time
step, and each group represents exactly one community. We
call a community interpretation valid if and only if, for each
time step t, no two groups g and g′ share the same color.
This ensures Postulate 1, namely that only one group rep-
resents each community in each time step.

To measure the quality of a community interpretation, we
use costs to penalize violations of Postulates 3–5. There are
three different types of costs, individual, group, and color,

1The group vertices can also be viewed as hyperedges and
the entire structure as a hypergraph.

abbreviated as i-cost, g-cost, and c-cost. To allow for differ-
ent relative importance of these properties, we parametrize
the problem by non-negative parameters α, β1, β2, and γ.

i-cost: An individual cost of α is incurred whenever an in-
dividual changes its color. That is, if f(vi,t) 6= f(vi,t+1)
(i.e., the individual edge does not have matching col-
ors), a cost of α is added to the total cost.

g-cost: The group cost can be incurred for two reasons:
(1) if an individual vertex does not have an edge to
the group of the same color (f(vi,t) = f(vg,t), but
i /∈ g), a cost of β1 is incurred. (2) If an individual
vertex has an edge to a group of a color different from
its own (i ∈ g at time t, but f(vi,t) 6= f(vg,t)), a cost
of β2 is incurred. Thus, if an individual is present
at time t, but not in its group, then it incurs both
costs. The first cost penalizes the individual for being
absent from its current community, while the second
cost penalizes the individual for being different from
its current group.

c-cost: Finally, we assign a cost of γ for each color an
individual uses beyond its first, so the color cost for i
is γ · (|{f(vi,t) : t = 1, . . . , T}| − 1).2

The optimization problem is then to find the valid commu-
nity interpretation minimizing the total cost resulting from
the individual edges, group edges, and color usage. Once
such a coloring f has been found, we identify each commu-
nity Ci with the set of groups g = gj,t of color f(vg,t) = i.
The community structure is then the collection C of all com-
munities. Notice that we explicitly allow a community to
change or evolve over time. Once we have a community
structure, we can derive from it an affiliation sequence for
every individual i, the sequence Ai = 〈f(vi,1), . . . , f(vi,T )〉
of communities that i was a member of during the observa-
tion period.

Notice that by altering the parameters α, β1, β2, γ, we
can alter the dynamic expressiveness of the model. If α
and γ are large, then individuals will virtually never change
group membership, and we will recover the static commu-
nity structure as a special case. As α gets smaller, more
frequent changes are possible, and oscillating behavior be-
tween groups can be inferred as an explanation of the obser-
vations. Finally, once γ is small as well, we will find solutions
in which individuals change frequently among many groups,
essentially allowing the model to accommodate frequent and
complete changes of community structure. Having all pa-
rameters of the same order (in our case, all equal) turns out
to provide a good tradeoff to infer “meaningful” real-world
dynamic behavior in most cases.

2.2 Complexity of the Problem
Unfortunately, solving the community interpretation prob-

lem optimally is NP-complete, and cannot even be approxi-
mated arbitrarily well. We formally define the decision prob-
lem Community Interpretation as follows: Given cost
parameters α, β1, β2, and γ, a set X of n individuals and
a sequence H = 〈P1, P2, . . . , PT 〉 of observations, as well as
an upper bound B on the total cost, is there a community
interpretation for (X, H) of total cost at most B?

2Note that we could of course omit the constant −1 term,
but assigning no penalty for the first color makes a manual
interpretation of results more intuitive.



Theorem 1. The Community Interpretation problem
is NP-complete and APX-hard. That is, there is a constant
ǫ such that unless P=NP, no polynomial time algorithm can
achieve an approximation guarantee better than (1 + ǫ) for
Community Interpretation.

Proof. For membership in NP, simply observe that given
a certificate in the form of a coloring (community interpre-
tation), the total cost can be computed in polynomial time
by summing up all i-costs, g-costs, and c-costs, and then
compared to B.

To prove NP-hardness and APX-hardness, we give an ap-
proximation preserving reduction from the Minimum Mul-

tiway Cut problem, which is known to be APX-hard [8].
We reduce from the following APX-hard special case k = 3:
Given an undirected graph G = (V, E) with unit edge costs,
and three distinct terminal vertices s1, s2, s3 ∈ V as well as
a bound c on the total number of edges cut, is there a set C
of at most c edges such that all of s1, s2, s3 are disconnected
from each other in the graph (V, E \ C)?

Let n = |V |, m = |E|. The Community Interpretation

instance has an individual for each vertex v of G. During
each of the first m+1 time steps, each of the singleton groups
{s1}, {s2}, {s3} is observed (none of the other individuals are
observed during those times). Let e1 = {u1, v1}, . . . , em =
{um, vm} be an arbitrary ordering of the edges. During time
step m+1+t, exactly one group {ut, vt} is observed. That is,
for each edge of G, the two endpoints are observed together
exactly once. To complete the reduction, we set B = c, and
α = γ = m + 1, β1 = 0, and β2 = 1.

To prove that this is an approximation preserving reduc-
tion, we give a cost-preserving mapping from multiway cuts
to valid colorings and vice versa. First, given a cut C, let
S1, S2, S3 be the connected components containing s1, s2, s3,
respectively. Give all vertices in Si the same color in the
coloring instance. For all vertices not in any of the three
components (if any), arbitrarily color them with the same
color as s1. Finally, color each group of size 1 with the
color of its unique member, and each group of size 2 with
the color of one of its members. First, notice that this is a
valid coloring, as in the first m + 1 time steps, all singleton
groups have distinct colors, and in the remaining m time
steps, there is only one group in each time step. Because
individuals never change color, no i-costs or c-costs are in-
curred. Thus, the only cost is β2 whenever an individual
is present, but does not have the color of its group. This
never happens for groups of one individual, and happens for
groups of two individuals if and only if the corresponding
edge et is cut. Thus, the total cost is exactly the same as
the number of edges cut.

Conversely, if we have a valid coloring of the observation
sequence, we notice that without loss of generality, it does
not incur any i-costs or c-costs, since a cheaper solution (of
cost m) could always be obtained by simply assigning a fixed
and distinct color to each individual. Second, we notice that
each of s1, s2, s3 must have distinct colors. Otherwise, they
would incur a total g-cost of at least m + 1 during the first
m+1 steps, and again, a cheaper solution could be obtained
trivially by assigning all vertices a fixed distinct color. De-
fine S1, S2, S3 to be the sets of vertices with the same color
as s1, s2, s3, respectively. Let S4 be the set of all remaining
vertices (if any). Notice that we can assume w.l.o.g. that all
remaining vertices have the same color; otherwise, a cheaper
valid coloring could be obtained by coloring all of S4 with

the same color. Let C be the set of edges cut by the partition
(S1, S2, S3, S4). C by definition is a multiway cut separat-
ing s1, s2, s3. Furthermore, the groups incurring a cost of
β2 = 1 in the coloring are exactly those corresponding to
edges in C, as they are the ones with two distinct vertex
colors, meaning that one of the vertices must have a color
different from the group. (If any group of two vertices did
not have the color of either of its individuals, we could ob-
tain a cheaper solution by recoloring that group.) Thus,
we have proved that the size of C is exactly equal to the
cost of the group coloring we started with, completing the
approximation preserving reduction.

The reduction trivially implies that the problem is NP-
hard: in the decision version, we make the cost bound B
equal to the bound c on the number of edges cut. 2

3. FINDING OPTIMAL COLORINGS
We showed that the problem of inferring community struc-

ture in dynamic networks is NP-hard. Thus, for larger in-
stances, we will use heuristics or approximation algorithms.
However, before moving to fast heuristics, it is important
to evaluate the conceptual power of the proposed approach.
In other words, does the objective function defined above
truly capture meaningful community structure, at least if
the optimum solution is found? Certainly, if the objective
function itself already misrepresented the desired intuitive
notion, finding fast heuristics would be a worthless endeavor.
Hence, we first present an optimal algorithm based on ex-
haustive search and dynamic programming. Once we have
evaluated the optimal algorithm, and shown that its results
are meaningful, a secondary question will be whether the
solutions discovered are less informative in the real world
when heuristics are used instead of an optimal algorithm.

The key observation to making an exact algorithm some-
what tractable is that once a coloring for the group vertices
has been fixed, an optimum coloring for the individual ver-
tices can be computed using Dynamic Programming. While
the running time of the dynamic program is not polyno-
mial, its only exponential dependence is 2C , where C is the
number of communities. This tends to be significantly more
tractable than searching over arbitrary colorings of individu-
als. Since there tend to be significantly fewer group vertices
than individual vertices, an exhaustive search over all group
vertex colorings can be feasible for smaller instances.

At the heart of the dynamic programming approach is the
observation that, given a fixed group coloring, all incurred
costs can be associated with one individual at a time. That
is, the cost incurred by an individual does not depend on the
colors chosen for other individuals, once the group colors are
fixed.

Lemma 2. Given a coloring of the group vertices, the min-
imum cost coloring of the individual vertices consists of min-
imum cost colorings of the vertices of each individual i, in-
dependent of other individuals.

Proof. The total cost is the sum of all i-costs, g-costs,
and c-costs, over all relevant edges. i-costs occur only for
edges (vi,t, vi,t+1), and thus only depend on the colors of
the corresponding individual i. Similarly, g-costs arise from
present or absent edges (vi,t, vg,t), and thus only depend on
the color of individual i, for a fixed group coloring. Finally,
the c-cost for an individual i clearly depends only on the
colors for that individual. The total cost is the sum over



all individuals and all of their edges of the corresponding i-
costs, g-costs, and c-costs, and is thus minimized if the sum
is minimized for all individuals i independently. 2

We will use this observation to derive an optimal algo-
rithm for coloring individual vertices, given a group color-
ing. For now, assume that we have such an algorithm A,
which, given a group coloring fg, finds the optimum indi-
vidual coloring A(fg) for this particular group coloring fg.
By exhaustively trying all group colorings fg, and invoking
A(fg) for each of them, we ensure that we will find the op-
timum solution, since the optimum solution must use some
group coloring, f∗

g , which the exhaustive search also tries.
We will describe a dynamic programming based algorithm

A first. Next, we will give heuristics to be used in place of
the exhaustive search. These heuristics will not guarantee
that the best group coloring f∗

g is indeed considered, but so
long as a group coloring fg “close enough” to f∗

g is tried,
they will find a good solution.

3.1 Individual Coloring
By Lemma 2, it is enough to describe an algorithm for

optimally coloring any one individual over the T time steps.
By running this algorithm for each individual i, we obtain
a complete optimal coloring. So we fix one individual i.

Let ǫ denote the blank color. Let fg(t) be the color of the
group in which i participates at time step t, fg(t) = ǫ if and
only if i was unobserved. By this convention, an individual
with color ǫ at time step t is said to be unaffiliated with
any communities at that time step. Let C = {ǫ} ∪ {fg(t) :
t = 1, . . . , T} be the set of all group colors of i, including
the blank color ǫ. An optimal coloring for i can only use
colors in C; any other color would incur a c-cost and g-cost
without any compensating benefit.

Let Φ(t) = {S ⊆ C : 1 ≤ |S| ≤ t} denote the collection
of all possible subsets of colors used between time step 1
and t (notice that it is possible to use a color c ∈ C that
was not assigned to a group g during time steps 1, . . . , t).
Let G(t, x) be the g-cost of coloring i at time step t with
color x, I(t, x, y) the i-cost of coloring i at time steps t and
t − 1 with colors x and y, and C(x, R) the c-cost of using
color x when R is the set of colors used in prior steps. Notice
that G(t, x), I(t, x, y) and C(x, R) can all be easily computed
given the group coloring and the parameters α, β1, β2, and
γ.

The recurrence for the minimum cost of coloring i in time
step t with color x ∈ S, having used all the colors in the set
S ∈ Φ(t), is

Γ(t, S, x) = G(t, x)+ (1)

min
R∈Φ(t−1),y∈R

R∪{x}=S

(Γ(t − 1, R, y) + I(t, x, y) + C(x, R)).

Γ(1, {x}, x) = G(1, x). (2)

Note that if a set R ⊆ C satisfies R ∪ {x} = S, then R
must be either S or S \ {x}. Hence, the search is only over
two candidate subsets. In the initial condition (2), there is
no cost term C(x, ∅), as we defined the first color to be free.
Because the dynamic program explicitly optimizes over all
relevant choices for time steps t and t − 1, we obtain the
following Lemma by induction:

Lemma 3. Given a group coloring, the optimal cost of
coloring an individual i at time step t with a color x ∈ S,
having used all the colors in S ∈ Φ(t), is given by the Equa-
tions (1) and (2).

Applying this lemma to the end of the time horizon T , we
derive the following main theorem:

Theorem 4. Given a group coloring, the minimum cost
of coloring the individual i is

min
S∈Φ(T ),x∈S

Γ(T, S, x).

3.2 Time and Space Complexity
In analyzing the time and space requirements of the dy-

namic programming approach, we first observe that we only
need to retain the optimal solutions for the immediately
preceding time step. Thus, the table in step t needs to
have size

Pt

k=1 k
`

|C|
k

´

= O(|C|2|C|). Of course, we im-
plicitly still generate a table with an entry for each triple
(t, S, x). Finding the optimum value for a triple (t, S, x)
involves trying two different candidate sets R, each contain-
ing at most |C| colors. Thus, each of the O(T |C|2|C|) en-
tries is computed in time O(C), for a total running time of

O(T |C|22|C|). Finally, the Dynamic Program is run inde-
pendently for each of the individuals i, giving a total run-
ning time of O(nT |C|22|C|), with a space requirement of

O(|C|2|C|).

3.3 Group Coloring
In order to verify that the objective function captures ac-

tual community structure, we first optimize it exactly, by
using exhaustive search over all group colorings. As before,
we consider a group coloring as a mapping f from groups
g to colors N. We assume that the groups are indexed so
that all groups at time step t precede all groups at time
step t + 1. Then, we can simply search exhaustively over
all valid assignments of color to these indexed groups. We
speed up the exhaustive search by using Branch-and-Bound
techniques and restricting the search space by providing a
limit on the total number of colors in an optimal solution.

4. GROUP COLORING HEURISTICS
To avoid the exponential time required for exploring all

valid colorings, we next investigate group coloring heuristics.
Once the heuristic has found a group coloring, we still apply
dynamic programming to color the individuals.

4.1 Bipartite Matching Heuristic
Intuitively, a group coloring is good if most of the individ-

uals can retain their color from one step to the next. This
avoids incurring either i-costs or g-costs for those individu-
als. We can use this intuition to derive a matching-based
heuristic. For each pair g, g′ at time steps t, t + 1, we add
an edge between vg,t and vg′,t+1, with weight |g∩ g′|. Using
standard flow techniques, we then find a maximum weight
bipartite matching among the group vertices for those two
time steps. The matching then defines which group g′ “in-
herits” the color of g (if any). This maximizes the number of
individuals whose color of the affiliated group stays the same
from t to t + 1. Since in particular with sparse group struc-
tures (most individuals are absent), the maximum weight
matching can be far from an optimal group coloring, we can



augment the heuristic by enumerating all or many maximal
matchings, and choosing from among them based on the ac-
tual coloring cost. The enumeration can be done efficiently,
in time O(n) per matching [37].

The bipartite matching heuristic intuitively aims to mini-
mize i-costs, but does not take g-costs into account as much.
Thus, it tends to perform well with fairly stable community
membership. However, it tends not to pick out oscillations,
as it only looks at consecutive time steps, and does not ob-
serve trends across two or more steps. Also, while maximum
flow computations tend to be fairly efficient, they may not
be efficient enough for large instances, in which many such
computations must be performed. We therefore consider
even more efficient greedy heuristics.

4.2 Greedy Heuristics
The matching algorithm tries to maximize the amount

of “similarity” preserved from one time step to the next.
More generally, we can define a notion of similarity for all
pairs of groups g, g′ occurring at different time steps. For
concreteness, assume that the similarity is normalized to
the interval [0, 1], where 0 denotes disjoint groups, and 1
identical groups. Then, a good approach is to find a coloring
maximizing the pairwise similarity over all pairs with the
same color. While this problem is still NP-complete, we can
use it as a point of departure for a class of greedy heuristics.

First, we need a notion of similarity between sets. Many
measures have been proposed; a standard one in the liter-

ature is Jaccard’s index [19] Jac(g, g′) = |g∩g′|
|g∪g′|

, measuring

the overlap of g, g′ relative to the total number of elements
in the sets. If we want to give more weight to similar groups
in close temporal proximity, we can scale the Jaccard in-
dex by the difference in time steps. Formally, we define

JacD(g, g′) = Jac(g,g′)
|t−t′|

, where t 6= t′ are the time steps at

which g and g′ occur, respectively. There are several other
natural similarity measures that can be combined with our
approach. Due to space constraints, we defer a more detailed
discussion to the full version of this paper.

With appropriate notions of similarity in place, we can
define a class of greedy algorithms, iteratively assigning two
groups the same color. Our algorithms are based on the idea
of neighbor-joining clustering [31], and differ merely in the
order in which candidate pairs of groups are considered.

In the most basic version of the greedy algorithm, we
repeatedly select the pair (g, g′) with the highest similar-
ity, and decide that g, g′ should have the same color. We
thus grow “uni-colored components”, much in the style of
Kruskal’s MST algorithm. Initially, each group is its own
component. We then consider the edges of non-zero simi-
larity by decreasing similarity measures. If an edge e un-
der consideration connects two components C, C′, we merge
them into one component, unless they already contain groups
g ∈ C, g′ ∈ C′ such that both g, g′ occur in the same time
step t. In the latter case, the edge e is discarded. After
all edges have been considered in this way, the algorithm
terminates, and assigns each component of groups its own
distinct color.

We can obtain a different greedy algorithm by proceeding
in increasing order of time steps. Initially, each group at
time step 1 obtains its own unique color. In iteration t,
we consider all groups at time step t. We repeatedly find
the edge (g′, g) connecting a group g at time step t with a

group g′ at time step t′ < t of largest similarity, and color g
with the same color as g′, provided that no other group at
time t has this color already. If g has no edge of non-zero
similarity to earlier time steps, or all such colors are already
taken, then g obtains its own color. Once all groups at time
step t are assigned colors, we move to the next iteration. We
call this algorithm the Backward Greedy algorithm, because
it only searches backward in its color assignments

Finally, we can obtain a somewhat more restrictive version
of Backward Greedy, by requiring that the edge e point no
further into the past than “necessary”. Specifically, when
considering group g at time t, we find the latest time t′ < t
such that g has a non-zero edge to some group g′ at time
t′. Then, the highest-similarity edge is selected among all
edges between g and groups at time t′, and g is colored
accordingly, as in Backward Greedy. We call this modified
algorithm Least Delay Greedy.

Obviously, since the problem is NP-complete, it is easy
to derive examples where none of these heuristics will find
the optimum solution. Furthermore, they are incomparable,
in that for any pair, one can provide examples where one
heuristic performs better than the other, and vice versa.

5. EXPERIMENTAL RESULTS
The main goal of our paper is to present a formal frame-

work of community identification in dynamic networks and
to show that it captures the concept of community. Thus,
we first show that the optimization problem of community
identification produces valid communities. We then show
that the proposed heuristics result in communities similar
to the optimum and thus perform well in practice. Since the
problem is NP-hard, we can only find the optimal solution
in small data sets. Thus, we first validate the dynamic com-
munity framework on small synthetic data sets, and also use
those small data sets to compare the heuristics to the opti-
mal algorithm. Once both the definitions and the heuristics
are validated, we proceed to apply them to larger practical
data sets.

We begin by inferring communities in two synthetic data
sets with known embedded communities. Next, we study
two real-world data sets in which communities are identified
by human domain experts.

5.1 Synthetic Data sets
We consider two data sets in which all individuals are al-

ways present. As a result, we can safely set β1 = 0. We
consider two cost settings (α, β2, γ) = (1, 1, 1) (high i-cost)
and (α, β2, γ) = (1, 3, 1) (high g-cost). Intuitively, these set-
tings tend to use different explanations for switches by an
individual: the former tends to posit “temporary aberra-
tions”, while the latter assumes frequent actual affiliation
changes.

Assembly Line
The Assembly Line example models communities in which
small changes happen in each time step, aggregating to com-
plete membership changes over longer periods of time. Real-
world examples include companies, PhD students in a de-
partment, casts of TV shows, or cells in the human body [33]
(as well as contents of an assembly line). The philosophical
question of what “identity” of an organism means in light
of replacement of all individual parts was already studied in
ancient Greece, and is known as Theseus’ Ship paradox [32].



An assembly line has n = km individuals and m groups.
In time step t, the ith group consists of individuals (ki + t)
mod n, . . . , (ki+t+k−1) mod n. That is, in each time step,
the lowest-numbered member of each group moves to the
next lower group (wrapping around at n). Figure 3 shows
an example of an Assembly Line with n = 6 individuals and
m = 2 groups.
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Figure 3: Optimal colorings of Assembly Line

with costs (α, β1, β2, γ) = (1, 0, 1, 1) and (α, β1, β2, γ) =
(1, 0, 3, 1).

Figure 3(a) shows the optimal coloring under the cost set-
ting (α, β2, γ) = (1, 1, 1) in which i-cost is relatively high.
Thus, individuals do not change colors, and the commu-
nity a group represents is determined by a simple major-
ity vote. In particular, the result is similar to what would
be obtained by aggregating groups over time, and applying
static analysis. On the other hand, with the cost setting
(α, β2, γ) = (1, 3, 1), the g-cost is high. Figure 3(b) shows
that the resulting coloring has individuals change their com-
munity membership to match their group. Thus, the iden-
tity of groups stays the same even as the individual members
change. We also note here that in this particular instance,
the greedy heuristic leads to the optimal coloring for pa-
rameters (α, β2, γ) = (1, 1, 1) using the Jaccard similarity
measure, and for (α, β2, γ) = (1, 3, 1) using the JacD mea-
sure.

Dutiful Children
Another common dynamic scenario is a population with sev-
eral mostly stable communities, and a few “roaming” indi-
viduals, such as parents visiting their children in turn. In
our example (Figure 4), we have three children (individuals
2,3,4), visited in turn by their parents (individuals 0,1), at
times 1,4 (child 2), 2,5 (child 3), and 3,6 (child 4), respec-
tively. The importance of this data set is that it shows a
situation where the smallest number of colors needed to op-
timally color the graph is strictly greater than Pmax, the size
of the largest partition in a time step. In Figure 4, notice
that with the setting (α, β2, γ) = (1, 1, 1), the solution ac-
tually recovers the “underlying” structure of a roaming pair
joining three communities of individuals. For this example,
we observe that the greedy algorithm with either similarity
measure finds the optimum solution for both cost settings.

We summarize the cost of the heuristics compared to the
optimal cost in Table 1.

5.2 Real-World Data Sets
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Figure 4: Optimal colorings of Dutiful Children

with costs (α, β1, β2, γ) = (1, 0, 1, 1) and (α, β1, β2, γ) =
(1, 0, 3, 1).

Cost OPT
Jaccard

1 1/d
Assembly Line
High i-cost 8 8 18
High g-cost 18 20 18

Dutiful Children
High i-cost 6 6 6

High g-cost 13 13 13

Table 1: Cost comparisons on synthetic data sets.

Southern Women
Southern Women [9] is a data set collected in 1933 in Natchez,
TN, by a group of anthropologists conducting interviews
and observations over a period of 9 months. It tracks 18
women and their participation in 14 informal social events
such as garden parties and card games. The event partici-
pation table is shown in Figure 5, taken verbatim from [9].
The columns, each representing an event, are not ordered
chronologically, but are manually arranged by the table au-
thors to illustrate two communities at the upper-left and
lower-right corners.

Figure 5: The Southern Women data set.

The data set has been extensively studied, and used as
a benchmark for community identification methods [13]. A
summary of the community identification results of 21 meth-
ods was given by Freeman [13], and is shown as Figure 6.

Since there is only one group present in each time step of
the data set, it is essential that we use β1 6= 0; otherwise,



Figure 6: Communities in Southern Women accord-

ing to the 21 methods in Freeman’s review.

sw4 #1 (1,1,1,1)*(2,8,29,2)=41

Ind G/I-Colorings 0 1 2 3

I1
.11 . .311.1.31 .

11111111111111
0 6 0 0

I2
.112. .11.1.3. .

11111111111111
0 5 0 0

I3
.112.311. . .31 .

11111111111111
0 5 0 0

I4
.1.2. .11.1.31 .

11111111111111
0 5 0 0

I5
.1.2. .1 . . . . .1 .

11111111111111
0 3 0 0

I6
.1. . . .11. . .3 . .

11111111133333
0 3 0 1

I7
.1.2. . .1 . . . 3 . .

33333333333333
0 0 0 1

I8
. . . . . 3 .1. . .3 . .

33333333333333
0 0 0 2

I9
.1.2.3. . . . . 3 . .

33333333333333
0 0 0 2

Ind G/I-Colorings 0 1 2 3

I10
. . .223 . . . . .3 . .

22222333333333
0 0 2 2

I11
. . . . 23 . .2 . .3 . .

33333333333333
0 0 0 2

I12
. . . . 23 . .2 . .3 . .

33333333333333
0 0 0 2

I13
. . .223 . .2 .23 .2

22222222222222
0 0 5 0

I14
0. .223 .12 .2 . .2

22222222222222
0 0 5 0

I15
0. .22. . .2 .23 .2

22222222222222
0 0 5 0

I16
. . . . .3 . . . . .3 . .

33333333333333
0 0 0 2

I17
0. . . .3 . . . . . . . .

00000000000000
1 0 0 0

I18
0. . . .3 . . . . . . . .

00000000000000
1 0 0 0

Table 2: An optimal coloring on the Southern

Women data set under cost setting (α, β1, β2, γ) =
(1, 1, 1, 1). Cost=41

the optimal solution would trivially be obtained by color-
ing all individuals with the same color. We considered two
cost settings: (α, β1, β2, γ) = (1, 1, 1, 1), and (α, β1, β2, γ) =
(1, 1, 3, 1). In the former case, temporarily switching group
membership is more expensive, in the latter, being absent
from a group meeting is expensive.

Tables 2 and 3 show the optimal colorings under these
cost settings. The major difference between the colorings
is the group color in time steps 4 and 5. Notice that our
approach with both parameters correctly identifies the ex-
istence of two communities, even though only one group is
present in each time step. The results of most of the 21
methods proposed in the past and our results agree that the
first group consists of individuals 1–7, and the other group
consists of individuals 10–13. The disagreement of the 21 re-
sults is also shown in the affiliation of individuals 8, 9, and
16. It should be noted that most of the results of previously
proposed approaches can be obtained using our algorithms
with appropriate parameter settings. We will elaborate on
this aspect in more detail in the full version of this paper.

The coloring in Table 3 may explain why the 21 methods
do not agree on the affiliation of individuals 8, 10, and 16.

sw4 #1 (1,1,3,1)*(25,18,4,15)=70

Ind G/I-Colorings 0 1 2 3

I1
.11 . .311.1.12 .

11111111111122
0 6 1 0

I2
.111. .11.1.1. .

11111111111111
0 7 0 0

I3
.111.311. . .12 .

11111111111122
0 6 1 0

I4
.1.1. .11.1.12 .

11111111111122
0 6 1 0

I5
.1.1. .1 . . . . .2 .

11111112222222
0 3 1 0

I6
.1. . . .11. . .1 . .

11111111111111
0 4 0 0

I7
.1.1. . .1 . . . 1 . .

11111111111111
0 4 0 0

I8
. . . . . 3 .1. . .1 . .

33333331111111
0 2 0 1

I9
.1.1.3. . . . . 1 . .

11111333111111
0 3 0 1

Ind G/I-Colorings 0 1 2 3

I10
. . .133 . . . . .1 . .

33313333111111
0 2 0 2

I11
. . . . 33 . .3 . .1 . .

33333333331111
0 1 0 3

I12
. . . . 33 . .3 . .1 . .

33333333331111
0 1 0 3

I13
. . .133 . .3 .31 .3

33313333333113
0 2 0 5

I14
0. .133 .13 .3 . .3

00013331333333
1 2 0 5

I15
0. .13. . .3 .31 .3

00013333333113
1 2 0 4

I16
. . . . .3 . . . . .1 . .

33333333111111
0 1 0 1

I17
0. . . .3 . . . . . . . .

00000000000000
1 0 0 0

I18
0. . . .3 . . . . . . . .

00000000000000
1 0 0 0

Table 3: An optimal coloring on the Southern

Women data set under cost setting (α, β1, β2, γ) =
(1, 1, 3, 1). Cost=70.

These individuals are affiliated with both communities for
almost equal amounts of time. Furthermore, individuals 17
and 18 belong to a separate community, which explains why
some of the 21 methods cannot identify their community
membership.

While the greedy heuristics do not obtain optimal results
on this data set, they are very close to optimal. As a rep-
resentative, we show the results of the greedy algorithm
using the Jaccard similarity function with the cost setting
(1, 1, 1, 1) in Table 4. A summary of the performance of
different heuristics is given in Table 5. Due to space con-
straints, we defer a more in-depth discussion of the effects
of heuristics to the full version of this paper.

Grevy’s Zebra Data Set
The Grevy’s zebra (Equus grevyi) data set was obtained by
observing spatial proximity of members of a zebra herd.
Populations of Grevy’s zebras were observed by biologists
[36] over three months in 2002 in Kenya. Predetermined
census loops were driven approximately twice per week. In-
dividuals were identified by unique stripe patterns, and their
locations taken by GPS. In the resulting data set, individ-
uals are in the same group if their GPS locations are very
close. The data set contains 28 individuals interacting over a
period of 44 time steps. Many of the individuals are missing
in many time steps.

The aggregate social network of the zebra population is
shown in Figure 7. Notice that the aggregate network is very
dense, and would not let us infer much interesting commu-
nity structure and change by itself. Figure 8 shows the result
of the greedy heuristic applied to the data set. While there
is no agreed-upon “correct” community structure for this
relatively new data set yet, the inferred communities agree
with those identified manually by biologists. Notice that the
dynamic interpretation lets us observe interesting phenom-
ena, such as individual 3 switching its affiliation during the
observation period. Such changes are obscured in the static
graph. Due to space constraints, a more detailed discussion
of results on this data set and the performance of different



sw4 union 52 #1 (1,1,1,1)*(0,3,41,0)=44

Ind G/I-Colorings 0 2 4 5 6

I1
.01 . .200.3.20 .

00000000000000
4 0 0 0 0

I2
.014. .00.3.2. .

00000000000000
3 0 0 0 0

I3
.014.200. . .20 .

00000000000000
4 0 0 0 0

I4
.0.4. .00.3.20 .

00000000000000
4 0 0 0 0

I5
.0.4. .0 . . . . .0 .

00000000000000
3 0 0 0 0

I6
.0. . . .00. . .2 . .

00000000000000
3 0 0 0 0

I7
.0.4. . .0 . . . 2 . .

44444444444444
0 0 1 0 0

I8
. . . . . 2 .0. . . 2 . .

22222222222222
0 2 0 0 0

I9
.0.4.2. . . . . 2 . .

22222222222222
0 2 0 0 0

Ind G/I-Colorings 0 2 4 5 6

I10
. . .452 . . . . .2 . .

22222222222222
0 2 0 0 0

I11
. . . .52 . .5 . .2 . .

22222222222222
0 2 0 0 0

I12
. . . .52 . .5 . .2 . .

22222222222222
0 2 0 0 0

I13
. . .452 . .5 .52 .5

55555555555555
0 0 0 4 0

I14
6. .452 .05 .5 . .5

55555555555555
0 0 0 4 0

I15
6. .45 . . .5 .52 .5

55555555555555
0 0 0 4 0

I16
. . . . .2 . . . . .2 . .

22222222222222
0 2 0 0 0

I17
6. . . .2 . . . . . . . .

66666666666666
0 0 0 0 1

I18
6. . . .2 . . . . . . . .

66666666666666
0 0 0 0 1

Table 4: A heuristic coloring using Jaccard simi-

larity on the Southern Women data set under cost

setting (α, β1, β2, γ) = (1, 1, 1, 1). Cost=44

Cost OPT Jaccard JaccardD

High i-cost 41 44 56
High g-cost 70 80 87

Table 5: Cost comparison for Southern Women

heuristics is deferred to the full version.
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Figure 7: Aggregate social network of zebras

6. CONCLUSIONS
We have presented a framework for identifying communi-

ties and their dynamics in social networks, and shown that
the results are meaningful by comparing them with tradi-
tional methods. For the Southern Women data set, our
methods can identify the same communities as the tradi-
tional methods (the 21 methods in [13]). In fact, several
traditional methods for community identification are spe-
cial cases of the proposed framework. Moreover, our method
also gives more insight into the dynamics of communities,
answering questions such as who changes from which com-
munity to which, and when.

Although our approach can find good communities, we
showed that finding optimal colorings is NP-hard. We have
presented heuristic algorithms which find near optimal solu-
tions in practice. The next step is to devise approximation
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Figure 8: Coloring obtained with greedy heuristic

and costs (α, β1, β2, γ) = (1, 0, 1, 1).

algorithms with provable guarantees in place of the heuris-
tics used for our evaluations.

Finally, we have not investigated in full the scalability
of the proposed heuristics to large networks observed over
long time periods. This is an important property of all al-
gorithms applied to current network datasets and needs to
be addressed in the future.
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