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Abstract. We study the problem of identifying prices to support a given
allocation of items to bidders in an envy-free way. A bidder will envy
another bidder if she would prefer to obtain the other bidder’s item at
the price paid by that bidder. Envy-free prices for allocations have been
studied extensively; here, we focus on the impact of budgets: beyond their
willingness to pay for items, bidders are also constrained by their ability

to pay, which may be lower than their willingness.
In a recent paper, Aggarwal et al. show that a variant of the Ascending
Auction finds a feasible and bidder-optimal assignment and supporting
envy-free prices in polynomial time so long as the input satisfies certain
non-degeneracy conditions. While this settles the problem of finding a
feasible allocation, an auctioneer might sometimes also be interested in
a specific allocation of items to bidders. We present two polynomial-time
algorithms for this problem, one which finds maximal prices support-
ing the given allocation (if such prices exist), and another which finds
minimal prices. We also prove a structural result characterizing when
different allocations are supported by the same minimal price vector.

1 Introduction

One of the most central and basic economic problems is the allocation of items
to individuals. This is frequently accomplished via auctions, wherein the bidders
communicate their values for the items to an auctioneer, who then decides on
an allocation of items to bidders and prices to be paid.

An important property of an auction is that it be envy-free: no bidder wishes
to receive one or more items assigned to other bidders at the price the other bid-
ders are paying. If bidders were envious in this sense, the outcome of the auction
might not be stable, or bidders might refuse to participate in the auction in the
future. There has been a big surge in interest in envy-free allocations and pricing
of items within the computer science community recently [9, 12, 6, 2]. Much of
the work focuses on the interplay between combinatorial structure among the
item sets bidders are interested in and the revenue that can be extracted, usually
with efficient computation.

In reality, bidders are not only constrained by their willingness to pay for
items, but also by their ability to pay [5, 8]. For instance, a bidder looking for a
house might have an extremely high valuation for a mansion, but nowhere near



the resources to buy it at a price close to her valuation. Then, her envy will only
be relevant if another bidder gets to purchase the mansion at a price which this
bidder could afford.

Introducing budget limitations changes the problem significantly. For in-
stance, there may now be feasible allocations which do not maximize social
welfare, and efficient allocations may not be feasible any more. More generally,
the structure of feasible allocations and matching prices becomes quite rich. In
a recent paper, Aggarwal et al. [1] show that a variant of the Ascending Auction
finds, in polynomial time, a feasible assignment and supporting envy-free budget-
friendly truthful prices so long as the input satisfies certain non-degeneracy con-
ditions. In fact, the allocation they find is bidder-optimal, in the sense that the
price paid by every bidder is a lower bound on the price the bidder could pay
for any feasible allocation and corresponding prices.

While this settles the problem of finding a feasible allocation, an auctioneer
might sometimes also be interested in a specific allocation. For instance, there
may be constraints not captured otherwise which prescribe that certain alloca-
tions are preferable from the auctioneer’s point of view. Thus, an important and
natural question is whether, given the bidders’ valuations and budgets (as well
as the auctioneer’s reserve prices), a given allocation of items to bidders can be
supported with envy-free prices.

In this paper, we give two polynomial-time algorithms for this problem, one
which finds maximal envy-free prices supporting the given allocation (if such
prices exist), and another which finds minimal prices. In particular, our al-
gorithms show the existence of maximal and minimal price vectors. Both al-
gorithms are based on label-relaxation schemes (of a dynamically constructed
graph) in the style of the Bellman-Ford algorithm for shortest paths; in the case
of the minimal prices, this algorithm has to be augmented by a further insight
to prevent pseudo-polynomial running time. Furthermore, as a first step toward
a more complete characterization of feasible allocations and the corresponding
supporting envy-free budget-friendly prices, we give a combinatorial condition
for minimal price vectors to be the same.

Related Work. Guruswami et al. [11] initiated the study of envy-free revenue-
maximization for non-budget-constrained unit-demand bidders. If all items must
be allocated, the maximum price vector can be found in polynomial time [13].
However, if some items can be omitted to increase competition, then this gen-
eral problem becomes APX-hard; the current best approximation guarantee is
O(log n) [11]. Multi-unit truthful auctions for budget-constrained bidders with
linear valuations were first studied by Borgs et al. [4]. They constructed a truth-
ful randomized mechanism which asymptotically achieves revenue maximization.
Dobzinski et al. [8] essentially show that a deterministic truthful Pareto-optimal
auction exists if and only if budgets are public information. Additionally, for
the case of an infinitely-divisible single good, no anonymous truthful mechanism
can produce Pareto-optimal allocations if bidders are budget-constrained [8],
whereas if randomization is allowed, such mechanisms do exist [3].



2 Model and Preliminaries

We consider a set M of n distinct indivisible items, and a set N of n bidders.
Bidders are unit-demand, i.e., each bidder is interested in purchasing at most one
item. Bidder i’s willingness to pay is captured by a valuation function v. Thus,
bidder i has value vi(j) for item j. Additionally, each bidder has an item-specific
budget bi(j), indicating her ability to pay for item j: the maximum amount of
money the bidder can afford for this item. A particularly natural special case
is when bi(j) = bi for all j, i.e., bidder i is constrained by a fixed amount of
money. However, our results hold in more generality. If bi(j) ≤ vi(j) for at least
one item j, we call bidder i budget-constrained, otherwise, bidder i is non-budget-

constrained. For convenience, we denote v
(0)
i (j) = min(vi(j), bi(j)).

Item j will be assigned price pj ; we use p to denote the vector of all prices.
The prices may be constrained by the auctioneer: the auctioneer has reserve
prices rj ≥ 0 for items j, such that an item cannot be sold at a price less than
rj . In other words, a price vector p is feasible only if p ≥ r. Additionally, when
pj < bi(j), we say that bidder i can afford item j with prices p. (We require strict
inequality for technical convenience; among other things, it makes the notion of
a minimal price vector well-defined.) When assigned item j at price pj , bidder i

derives a utility of ui(j) = vi(j)−pj if pj < bi(j) and −∞ otherwise. Therefore,

the utility is positive whenever pj < v
(0)
i (i).

In general, an allocation a is a partition A1, . . . , An of the n items among
the n bidders, where Ai is the set of items allocated to bidder i. Since we focus
on unit-demand bidders, we are particularly interested in allocations that are
assignments, in that |Ai| = 1 for all i, i.e., each bidder gets exactly one item. In
that case, we write ai for the unique item assigned to bidder i.

Definition 1 (Envy-Free Budget-Friendly Allocations, Supporting Prices).
An allocation a is envy-free budget-friendly if there exists a price vector p ≥ r
such that for every i = 1, . . . , n:

1. pai
< bi(ai) (bidder i can afford the item allocated to her) and pai

≤ vi(ai)
(bidder i derives non-negative utility from her item).

2. vi(ai) − pai
≥ vi(j) − pj for all items j with pj < bi(j). That is, bidder i

would not prefer another item she can afford over her own at the current
prices.

A feasible price vector p satisfying these conditions is said to support the
allocation a.

The notion of envy-free budget-friendly allocations can be considered a gen-
eralization of a Walrasian Equilibrium [7, 10] to budget-constrained bidders.3

Unlike the case of non-budget-constrained bidders, there need not be any envy-
free budget-constrained assignments (e.g., [14]). Furthermore, even when such

3 We are mainly interested in assignments; therefore, we do not require that any
unallocated items have zero price.



assignments do exist, the efficient allocation might not be envy-free budget-
friendly.

Formally, the input consists of the matrix of valuations V = (vi(j))i,j , the
matrix of budget limits B = (bi(j))i,j , and an allocation a. The goal is to identify
a price vector p supporting a, or to conclude that no such price vector exists.

3 Polynomial-time Algorithms

For simplicity, we assume that the desired allocation a is ai = i for all bidders.
We then use pi to denote the price of the item assigned to bidder i. We can also

assume that v
(0)
i (i) ≥ ri; otherwise, no supporting price vector exists.

Both of our algorithms for the assignment problem are based on the notion
of an envy graph.

Definition 2 (Envy Graph Gp). Given an arbitrary price vector p, the envy
graph Gp has one node for each bidder, and a directed edge from bidder i to
bidder j if and only if pj < bi(j), i.e., if and only if bidder i could afford bidder
j’s assigned item at the current prices. Whenever the edge (i, j) is present, it is
labeled λ(i,j) = vi(i) − vi(j).

Intuitively, the label captures how much bidder i “prefers” bidder j’s item
over her own, if both were priced the same. (The more negative λ(i,j) is, the
more i prefers j’s item.) Notice that the edge labels are independent of the price
vector p, and only the existence or non-existence of edges depends on the prices.
The following two simple insights lie at the heart of our algorithms:

Proposition 1. Let P be any directed path from i to j in Gp, and L =
∑

e∈P λe

the sum of labels along the path.

1. Let p be any price vector such that for every price vector p′ supporting the
allocation a, we have p ≤ p′ (component-wise). Then, p′j ≥ pi − L.

2. Let p be any price vector such that for every price vector p′ supporting the
allocation a, we have p ≥ p′ (component-wise). Then, p′i ≤ pj + L.

Proof. We prove the first statement — the second one is analogous. For any
edge (u, v) ∈ P , envy-freeness of p′ implies that p′v ≥ p′u − λ(u,v). Adding the
inequalities for all edges e ∈ P , and using that p′i ≥ pi now proves the claim.

By setting i = j in Proposition 1, we obtain the following simple corollary:

Corollary 1. If p is an envy-free price vector, then Gp contains no negative
cycles.



Algorithm 1 Label Relaxation for Minimal Supporting Prices

1: Start with pi = ri for all i.
2: while there is an edge (i, j) ∈ Gp with pi > pj + λ(i,j) do

3: Update pj := min(bi(j), pi − λ(i,j)).
4: Remove any edge (u, j) with pj ≥ bu(j) from Gp.
5: if pi ≥ bi(i) for any i then

6: No supporting prices exist.
7: else

8: p is a supporting price vector.

3.1 Finding Minimal Prices

The first part of Proposition 1 suggests a simple pseudo-polynomial algorithm
for finding supporting minimal prices for an allocation (or concluding that no
supporting prices exist). Algorithm 1 is a label relaxation algorithm in the style
of the Bellman-Ford shortest paths algorithm.

The pseudo-polynomial running time results from negative cycles in Gp. To
speed up the algorithm, we will therefore choose the edge (i, j) in the while loop
judiciously to break negative cycles fast. Let C be a negative cycle in Gp, with
nodes u1, u2, . . . , uk. Let Pij denote the unique path from ui to uj on C, and
Lij =

∑
e∈Pij

λ(ui,uj) the total edge weight on Pij . Intuitively, the update step

from Algorithm 1 will have to continue until at least one of the edges (ui, ui+1)
is broken, because item i + 1 is not affordable to bidder i any more. However,
this may take pseudo-polynomial time. Our goal is to “fast-forward” the update
steps along the cycle.

Lemma 1. There exists a node ui such that pui
> puj

+ Lij for all j.

Proof. Suppose for contradiction that for each i, there exists a j(i) such that
pui

≤ puj(i)
+Lij(i). Consider the graph on nodes ui with an edge from ui to uj(i).

Because each node has an outgoing edge, this graph must contain some cycle
C ′ = {ui1 , . . . , ui`

, ui`+1
= ui1} such that puir

≤ puir+1
+Lirir+1

for all 1 ≤ r ≤ `.
Because each node appears once on the right and left side, after adding up these
inequalities and canceling out, we obtain that

∑`

r=1 Lirir+1
≥ 0. But the sum

is exactly the weight of going around C one or more times (following C ′), and
thus negative, a contradiction.4

If we update the node prices in the order u2, u3, . . . , uk, it is easy to see by
induction that (1) each node will need to be updated upon its turn, and (2) ui

will be updated to pu1
− L1i. Extending this observation to updates continuing

around C, we can see the following:

Proposition 2. If the algorithm has updated the prices going around C, and
has updated node ui c times, then its new price is p′ui

= pu1
− cL − L1i > pui

.

4 An alternative proof reduces this statement to the well-known “Racetrack” puzzle.
We thank Peter Winkler for this observation.



Thus, we can determine the outcome of the update process as follows: For

each i, let ci = b
bui−1

(ui)−(pu1
−L1i)

L
c be the number of iterations around the cycle

after which bidder ui−1 cannot afford item ui any more (where u0 = uk). Then,
let j = argmini ci, with ties broken for the smallest i. According to Proposition
2 and the definition of j, if we update each ui (for i ≤ j) ci times, and each ui

for i > j ci − 1 times, then p′uj
> buj−1

(uj), and p′ui
≤ bui−1

(ui) for all i 6= j. In
particular, this means that the updates are consistent with an execution of the
relaxation algorithm.

Thus, Algorithm 2 is a polynomial-time version of Algorithm 1.

Algorithm 2 Polynomial-Time Minimal Supporting Prices

1: Start with pi = ri for all i.
2: while Gp contains a negative cycle C do

3: Let u1 ∈ C be a node satisfying Lemma 1, and C = {u1, . . . , uk}.
4: Compute L1i =

∑i−1
j=1 λ(uj ,uj+1) for all i.

5: Compute ci = b
bui−1

(ui)−(pu1
−L1i)

L
c for all i.

6: Let j = argmini ci, ties broken for smallest i.
7: Update p′

ui
= pu1 −L1i −cjL for i ≤ j, and p′

ui
= pu1 −L1i − (cj −1)L for i > j.

8: Update p = p′, and update Gp.
9: if pi ≥ bi(i) for any i then

10: No supporting prices exist.
11: else

12: p is a supporting price vector.

The running time in each iteration is dominated by finding a negative cycle,
which can be accomplished in time O(mn) by a simple extension of the Bellman-
Ford algorithm. All other operations take time O(n). Since each iteration of the
while loop removes at least one edge, the total running time is at most O(m2n).

Proposition 1 implies by induction that in each iteration, the vector p of the
algorithm satisfies p ≤ p′ (component-wise) for any price vector p′ supporting
a. Thus, whenever Algorithm 1 outputs a price vector p, we have that p ≤ p′ for
any price vector p′ supporting a. Because Algorithm 2 outputs the same final
vector as Algorithm 1, we have proved:

Corollary 2. If a is an envy-free budget-friendly allocation for V,b, then Al-
gorithm 1 outputs the (unique) minimal price vector p− satisfying p− ≤ p′

(component-wise) for all price vectors p′ supporting a. In particular, there ex-
ists a unique minimal price vector supporting a.

Maximal Prices It is possible to find maximal prices supporting a. In this

case, the procedure starts with prices pi = v
(0)
i (i) and iteratively makes price-

adjustment similar to Algorithm 1, except prices are decreased in response to
envy. If there remains a negative cycle once the algorithm terminates, we deduce
that no supporting prices exist. The algorithm can be shown to run in polynomial



time even without fast-forwarding. Due to space constraints, the algorithm will
be discussed in detail in the full version of this paper.

4 Affordability Graphs and Minimal Price Vectors

The structure of feasible allocations and corresponding supporting prices is much
richer in the presence of budgets than for traditional envy-free auctions. If all
bidders are non-budget-constrained, an allocation is feasible if and only if it is
efficient (i.e.,

∑
i vi(ai) ≥

∑
i vi(aπ(i)) for any permutation π). A price vector

supports either all allocations, or none of them [10]. However, once we introduce
budgets, the situation changes significantly. The efficient allocation may not be
feasible with budgets, while inefficient allocations are. Furthermore, there can be
allocations a,a′ with corresponding supporting prices p,p′ such that p does not
support a′, and vice versa. As a first step toward a complete characterization,
we give a combinatorial condition for minimal price vectors to be the same. The
condition is based on the concept of an affordability graph.

Definition 3 (Affordability Graph Hp). The affordability graph Hp is a
bipartite graph on bidders and items, containing an edge (i, j) if and only if
bidder i can afford item j at the prices p, i.e., pj < bi(j).

If p is a minimal price vector, Hp captures all of the essential information
about p, in the following sense (a generalization of Lemma 6 in [10]):

Lemma 2. Let a,a′ be two envy-free budget-friendly assignments, and p,p′ the
corresponding minimal supporting prices. Then p = p′ if and only if Hp = Hp′ .
Furthermore, if Hp = Hp′ , then the social welfare of all bidders is the same
under (a,p) and (a′,p′), i.e.,

∑
i vi(ai) =

∑
i vi(a

′

i).

Proof. One direction is obvious: if p = p′, then the edge (i, j) is in Hp if and
only if it is in Hp′ . Hence, Hp = Hp′ . For the converse direction, assume that
Hp = Hp′ . Because a is envy-free and supported by p, each bidder prefers her
own assigned item to all items she can afford, i.e.,

vi(ai) − pai
≥ vi(j) − pj (1)

for every item j with pj < bi(j). Because a′ is an allocation, we can write j = a′

k

for a (unique) k in the right-hand side above, obtaining:

vi(ai) − pai
≥ vi(a

′

k) − pa′

k
(2)

for each k with pa′

k
< bi(a

′

k). Because bidder i can afford item a′

i with the
price vector p′, and the affordability graphs are the same, i can also afford a′

i

with prices p. Thus, we can apply Inequality (2) with k = i, to obtain that
vi(ai) − pai

≥ vi(a
′

i) − pa′

i
. Summing this inequality over all bidders i, and

noticing that both a and a′ are permutations, gives us that

∑
i(vi(ai) − pai

) ≥
∑

i(vi(a
′

i) − pa′

i
)



Adding
∑

i pai
on both sides shows that

∑
i vi(ai) ≥

∑
i vi(a

′

i). A com-
pletely symmetric argument shows the opposite inequality, so we have proved
that

∑
i vi(ai) =

∑
i vi(a

′

i).
Subtracting

∑
i pai

=
∑

i pa′

i
on both sides implies that

∑
i(vi(ai) − pai

) =∑
i(vi(a

′

i) − pa′

i
). If there were an i with vi(ai) − pai

> vi(a
′

i) − pa′

i
, then there

would have to be some k with vk(ak)−pak
< vk(a′

k)−pa′

k
, which would contradict

the fact that p supports a. Thus, vi(ai) − pai
= vi(a

′

i) − pa′

i
for all bidders i.

Combining this with Inequality (1) we get that vi(a
′

i) − pa′

i
≥ vi(j) − pj for

every item j with pj < bi(j). Thus, p supports the assignment a′

, and by the
minimality of p′, we get that p′ ≤ p component-wise. A symmetric argument
shows that p ≤ p′, and thus completes the proof.
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