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Abstract

In recent years, gossip-based algorithms have gained
prominence as a methodology for designing robust and
scalable communication schemes in large distributed sys-
tems. The premise underlying distributed gossip is very sim-
ple: in each time step, each node v in the system selects
some other node w as a communication partner — gener-
ally by a simple randomized rule — and exchanges infor-
mation with w; over a period of time, information spreads
through the system in an “epidemic fashion”.

A fundamental issue which is not well understood is the
following: how does the underlying low-level gossip mech-
anism — the means by which communication partners are
chosen — affect one’s ability to design efficient high-level
gossip-based protocols? We establish one of the first con-
crete results addressing this question, by showing a funda-
mental limitation on the power of the commonly used uni-
form gossip mechanism for solving nearest-resource loca-
tion problems. In contrast, very efficient protocols for this
problem can be designed using a non-uniform spatial gossip
mechanism, as established in earlier work with Alan De-
mers.

We go on to consider the design of protocols for more
complex problems, providing an efficient distributed gossip-
based protocol for a set of nodes in Euclidean space to con-
struct an approximate minimum spanning tree. Here too,
we establish a contrasting limitation on the power of uni-
form gossip for solving this problem. Finally, we investigate
gossip-based packet routing as a primitive that underpins
the communication patterns in many protocols, and as a
way to understand the capabilities of different gossip mech-
anisms at a general level.
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1. Introduction

Gossip-based communication. In recent years, gossip-
based algorithms have gained prominence as a method-
ology for designing robust and scalable communication
schemes in large distributed systems. The premise under-
lying distributed gossip is very simple: in each time step,
each node v in the system selects some other node w as a
communication partner — generally by a simple random-
ized rule — and exchanges information with w; over a pe-
riod of time, information spreads through the system in an
“epidemic fashion”. Perhaps the most basic example of a
gossip mechanism, and one of the most widely studied, is
uniform gossip: in each step, each node v chooses some
other node w, independently and uniformly at random, and
sends a message to w. (For obvious reasons, this is some-
times called the “random phone call” or “rumor spreading”
mechanism.)

Gossip-based approaches thus stand in contrast to more
rigid communication structures in which nodes communi-
cate according to a carefully synchronized protocol, and
also in contrast to centralized schemes, in which a “leader
node” is responsible for disseminating information. Gossip-
based algorithms have the advantage that they are very easy
to implement, with each node following a simple local rule
in each time step; and they are highly fault-tolerant, since
communication will happen in aggregate despite a fairly
high level of message loss and node failures.

The pioneering work of Demers et al. [5] demonstrated
the power of gossip-based algorithms in the context of a dis-
tributed database system; subsequently, the approach has
been applied to tasks including failure detection [24], re-
source discovery [23, 10], data aggregation [8], and, fol-
lowing the initial work in [5], further problems in replicated
database management [1]. A number of papers have also
studied the dynamics of gossip from a combinatorial point
of view (see e.g. [6, 7, 11, 12, 21]). In many of these set-
tings, there is an underlying network that supports the ab-
straction of point-to-point communication — any node can



contact any other node in a given step — but the nodes are
also embedded in an underlying metric space, and the goals
of the application are related to proximity in this space. For
example, nodes may wish to find the nearest resource or
mirror site in a network, or be alerted if there is a nearby
event or process failure; here, “nearness” is with respect
to the metric space containing the points, while gossip —
thanks to the abstraction of point-to-point communication
— may proceed on a network that is conceptually the com-
plete graph.

In recent work with Alan Demers [13], we considered
such a framework, in which gossiping nodes are positioned
roughly uniformly in R

D; essentially, they are placed so
that each unit ball contains Θ(1) nodes. Such a setting sug-
gests two very natural gossip mechanisms. Using uniform
gossip, it can be shown [11, 21] that if nodes forward all
information they receive, a piece of information originating
with a given node will spread through the entire system in
O(log n) steps. At the other extreme is neighbor flooding
[17] in which each node communicates with its k nearest
neighbors in a round-robin fashion. In [13], we analyzed
a “hybrid” mechanism called spatial gossip, combining the
locality properties of flooding with the exponentially fast
dissemination of uniform gossip. For a parameter ρ, node v
chooses to send a message to node w with probability pro-
portional to d−ρD

v,w , where dv,w denotes the distance between
v and w. For exponents ρ between 1 and 2, we proved that
the time for a piece of information originating with a node v
to reach nodes at distance d is bounded by O(log1+ε d) for
some small ε, and independent of the total number of nodes.

Gossip mechanisms and protocols. Given the increas-
ing use of gossip-based approaches, many distributed com-
putational tasks are being solved by building application-
specific protocols on top of a simple gossip-based commu-
nication mechanism. For this reason, [13] argued in favor
of distinguishing between two conceptual layers in gossip-
based algorithms: A gossip mechanism, which simply de-
fines the communication connections that are made during
the execution, and a gossip protocol, which defines the se-
mantics of the messages that are exchanged over these con-
nections. For example, uniform gossip and spatial gossip
are mechanisms — they specify, through randomization,
who will talk to whom in each time step, but they do not
specify what the contents of the messages should be. We
say that a protocol for a higher-level task (e.g. resource dis-
covery, database replication) is based on such a mechanism
if this sequence of communications — who talks to whom
— is determined by the mechanism.

A fundamental question which is very little understood
is the following: How does the choice of gossip mechanism
affect one’s ability to design efficient protocols? For ex-
ample, are there natural problems for which it is provably

impossible to design an efficient protocol based on the uni-
form gossip mechanism? Can we tell when there exists an
efficient protocol based on one mechanism but not based on
another?

The resource location problem provides a clean setting
in which to pose such questions more concretely. In the
most basic version of the resource location problem, a sub-
set X of the nodes hold copies of some desirable resource,
and we want each other node to rapidly learn the identity
of an (approximately) nearest resource-holder. We will say
that a protocol is an efficient c-approximation for this prob-
lem if each individual communication connection contains
at most a poly-logarithmic number of messages, and after
a poly-logarithmic number of steps, each node knows of a
resource-holder whose distance is within a factor c of clos-
est, with high probability. Moreover, we will be concerned
in this paper with protocols that are atomic; informally, this
means that after a node first injects a given message into
the system, other nodes can only store, copy, and forward,
but not otherwise modify it. (We define atomicity precisely
in Section 2.) While this restricts the class of protocols
under consideration, it includes most natural gossip-based
approaches and is motivated in part from a security-based
standpoint, in which we want to preserve integrity of mes-
sages. In particular, if node v wants to consider node r its
nearest resource-holder, it should have received a copy of a
message originating with r.

In [13], we designed an efficient, atomic (1 + o(1))-
approximation for this problem, built on top of a spatial
gossip mechanism with exponent ρ between 1 and 2. Given
the analysis of spatial gossip, the use of such ρ values
seemed highly appropriate for the resource location prob-
lem, since the names of resource-holders should diffuse
rapidly through the set of nodes near them. At the same
time, we had no proof that the particular spatial gossip
mechanism was in any sense “necessary” for designing such
a protocol.

The present work. We begin by proving that, in fact,
there is no efficient, atomic poly-logarithmic approximation
for resource location based on the uniform gossip mech-
anism. Moreover, the result extends to show that spatial
gossip with any exponent ρ 6∈ [1, 2] cannot provide an ef-
ficient, atomic poly-logarithmic approximation for resource
location.

An important point to realize about this impossibility re-
sult is the following. If we run a poly-logarithmic num-
ber of steps of uniform gossip, and then look at the re-
sulting pattern of communication, it appears possible for
an algorithm in retrospect to find a way of informing most
nodes of their closest resource. (We conjecture this to be
the case, although we have not proved it.) The obstacle to
designing a protocol seems to be a computational one: for



small exponents, the pattern of communications is “too ran-
dom” for nodes to have any guidelines for choosing which
messages to forward. While the problem here is clearly
related in spirit to the area of communication complexity
(e.g. [16, 18]), the technical framework appears to be dif-
ferent — in particular, due to the atomicity condition.

We next consider a more complex problem, the con-
struction of a minimum spanning tree using spatial gossip.
Specifically, among a large set of nodes roughly uniformly
positioned in R

D, suppose there is a subset X of nodes that
want to organize themselves into a tree. (The members of
the subset need not know each others’ identities initially.)
We show how spatial gossip with ρ ∈ [1, 2) can be used to
design an atomic protocol which, within a poly-logarithmic
number of steps, constructs a tree on the nodes of X of to-
tal edge length within O(log |X|) of the minimum spanning
tree cost. Again, we can show that no such atomic protocol
exists based on the uniform gossip mechanism, or any spa-
tial gossip mechanism with ρ 6∈ [1, 2].

Finally, we consider a primitive underlying a number
of gossip-based applications: the routing of packets from
a set of source nodes to corresponding destination nodes.
One can view this as an abstract communication problem
through which to analyze the power of spatial gossip. We
assume that we are given a set M of messages (also called
packets) µ, each of which has associated with it a source
sµ and destination dµ, such that each node v is the source
and destination of O(1) messages (our results actually gen-
eralize to arbitrary bounds instead of O(1)). The goal of
a routing protocol is to use the communication connections
provided by the underlying gossip mechanism to forward all
of the messages to their destinations. In the process, arbi-
trarily many copies of the messages may be made and stored
at nodes. If nodes are allowed to forward all packets they
have ever received in a single step, this problem is easy; we
are concerned with the case in which only β messages may
be forwarded by any one node in a given step, for some up-
per bound β. We obtain the following trichotomy for spatial
gossip with exponent ρ.

1. For ρ < 1, for any routing assignment M , any protocol
(deterministic or randomized) will have routed at most
O(βnρt2) of the messages by time t in expectation.

2. For ρ = 1, there is a simple protocol routing all of
the messages in time O(log3 n) with high probability,
forwarding at most one message in each time step.

3. For ρ > 1, there are routing assignments M such that
any protocol (deterministic or randomized) will have
routed at most O(βn2−ρ · t) of the messages by time t.

There are two things that should be noted about this tri-
chotomy. First, the impossibility in part (1) applies to any
permutation, whereas the impossibility result in part (3) is

significantly weaker, asserting that there exist bad permu-
tations for any protocol. This is clearly critical, since for
the communication patterns that arise in resource location
and MST construction, we know that poly-logarithmic run-
ning time is possible using any exponent ρ ∈ [1, 2); the
“locality” in the problem leads to tractable communication
patterns.

The second point is that the obstacles to delivering all
messages in poly-logarithmic time are very different in na-
ture for exponents ρ < 1 and for ρ > 1. The former case
is akin to (and at the heart of) the impossibility result for
resource location when ρ < 1: although there may be a fea-
sible routing of messages in retrospect, there is no way to
find it as the protocol proceeds. On the other hand, when
ρ > 1, the problem is simply one of bandwidth — there
are not enough long-range connections made to even allow
forwarding all messages if they all have to travel a long dis-
tance in the underlying metric. Hence, even knowledge of
future random choices does not help in this case.

The three-part distinction in routing ability is similar to
a corresponding trichotomy in small-world networks [15].
The framework there is different; in [15], a set of underly-
ing nodes is explicitly augmented with “long-range” links;
here, we have a model supporting point-to-point communi-
cation, and the connections are specified in a step-by-step
fashion using the underlying gossip mechanism. Moreover,
we are seeking something much stronger here — rather
than searching for a single path, we wish to route an en-
tire permutation. Our routing protocol for exponent ρ = 1
also has a qualitative similarity to algorithms for permuta-
tion routing on networks derived from the butterfly (see e.g.
[22, 19]); in our protocol as well as those, the high-level
strategy is to begin the routing with “large” jumps between
nodes and converge to the destinations through smaller and
smaller jumps.

Finally, we show how to extend our algorithm for routing
an assignment to one in which the system runs indefinitely,
and new routing requests arrive continuously according to
an underlying randomized process. This naturally models a
setting in which the underlying gossip mechanism serves as
a long-running communication substrate on which packets
are continuously routed. Using a static-to-dynamic transfor-
mation in the spirit of [2, 4], together with a result of Hajek
[9], we show how spatial gossip with ρ = 1 can form the
basis of a stable routing protocol when packets are injected
at an inverse poly-logarithmic rate.

2. Preliminaries

In our model, we have a set of n nodes which are located
in a metric space that defines a distance du,v for any pair
of nodes. For the most part, we will think of the metric
space as R

D, with points spread roughly uniformly in the



sense defined in Section 1. However, the results hold for a
wider class of metric spaces as defined in [13], essentially
any metric space in which balls have uniformly polynomial
growth. In particular, we will also consider the metric space
in which the nodes correspond to the leaves of a “virtual”
balanced binary tree, and the distance between two nodes is
the length of the unique path between them in that tree.

We assume that there is an underlying mechanism for
point-to-point communication which allows every pair of
nodes to communicate, regardless of their distance. Fur-
thermore, we assume that each node can initiate at most
one such communication during any one round. Using this
point-to-point communication, a gossip mechanism pro-
vides a distribution on the connections that are actually
made. For two nodes u, v at distance d = du,v , we let
Bu(d) = {w | du,w ≤ d} denote the ball of radius d
around u. Then, in the spatial gossip scheme with expo-
nent ρ, node v contacts u with probability proportional to
|Bu(d)|−ρ. Notice that for points spread uniformly in R

D,
this distribution is identical to the one described in the in-
troduction.

In [13], it was suggested that the “output” of the un-
derlying gossip mechanism be considered as an entity of
interest in itself, called a temporal network [14]. A tem-
poral network is a graph G = (V,E) with edge labels
λ(e) that denote the time at which the two endpoints of the
edge “communicated” (hence, the graph may contain paral-
lel edges). Given a temporal network, we are particularly
interested in the existence of time-respecting paths [14, 7]
— paths P such that the labels on the edges are increasing
— since these are the paths along which information could
have moved from one endpoint to the other. A gossip mech-
anism can then be considered as a distribution on temporal
networks.

The protocols we develop in this paper are all atomic,
in the sense discussed informally in the introduction. To
formalize this notion, we want to capture the idea that mes-
sages in the protocol can only be stored, copied, and for-
warded, but not modified in other ways. Specifically, we
suppose that before the start of the protocol, each node v
generates a message µτ (v) for each time step τ . Then, in
step τ of the protocol, v may send a subset (up to a fixed
size bound β) of the set consisting of all messages it has
received up to that point and the messages µτ ′(v) for all
τ ′ ≤ τ .

3. Basic impossibility results: message routing
and resource location

3.1. Impossibility of routing with ρ < 1.

We begin with a general theorem that implies our impos-
sibility results for resource location and MST approxima-

tion. We consider a routing problem in which there is a set
of messages M that must be delivered; for each message
µ ∈ M , there is a source node sµ where it originates and a
set of possible destinations Dµ. The message is routed suc-
cessfully when it reaches any node v ∈ Dµ. (This includes
the natural special case in which all sets Dµ have size 1;
we invoke this greater generality because it will be useful
in proving impossibility results for approximate minimum
spanning trees in a subsequent section.) Now, for an under-
lying gossip mechanism, we consider whether there exists
an atomic protocol to solve this message routing problem in
a small number of steps. Note that there may be additional
messages sent; however, we will be concerned only with the
delivery of messages in the set M .

Theorem 3.1 Consider an arbitrary set M of m distinct
messages µ with sources sµ and destination sets Dµ, such
that |Dµ| ≤ ∆ for all messages µ. Suppose the under-
lying gossip mechanism has the property that for any pair
(u, v) of nodes, the probability that they communicate (ei-
ther because u calls v or vice versa) is bounded by p, and
the number of messages that can be exchanged during any
one connection is bounded by β.

Then, the expected number of messages that have been
delivered to any one of their destinations within t rounds is
O(∆ · p · t · (βtn + m)).

Before giving the actual proof, we outline a simpler and
more intuitive version, giving a weaker result for the fol-
lowing special case: each message µ has a unique desti-
nation, the underlying gossip mechanism is uniform gossip,
and only one message can be forwarded during any commu-
nication connection. That is, each node in each round calls
another node chosen uniformly at random, and forwards a
copy of some message it holds.

Throughout the execution, there are n distinct messages,
but they may exist in multiple copies, and at different nodes.
Initially, there is a total of n copies (over all messages), and
since at most n copies are added in each round, there are at
most τn copies at the beginning of round τ , and tn at the
end of the protocol. By the Pigeon Hole Principle, there are
at least (1 − ε)n messages such that there are at most t

1−ε

copies of each of those messages (for any ε > 0). Hence,
there are at most t

1−ε
nodes having one of these rare mes-

sages at any point in the protocol.
In order for a rare message to reach its destination, the

destination must at some point during the t rounds have
communicated with one of the at most t

1−ε
owners of the

rare message. By the Union Bound, the probability of this
is at most t · t

(1−ε)n , and by linearity of expectation, the
expected number of rare messages reaching their destina-
tions is at most t2 = o(n) for poly-logarithmic time bounds
t. Hence, the expected number of messages reaching their
destination in poly-logarithmic time is at most εn + o(n).



Proof of Theorem 3.1. Let Kτ (u, µ) the random event
that at time τ or earlier, node u has received the message µ,
and Kτ (u, µ) the 0-1 indicator variable for that event. Also,
we let Cτ (u, v) denote the event that nodes u and v commu-
nicate in round τ , either because u called v, or because v
called u. Finally, we write Aµ =

⋃

u∈Dµ
Kt(u, µ) for the

event that the message µ has reached any of its destinations
by time t, and Aµ for its 0-1 indicator variable. Then, the
number N of messages having reached any of their destina-
tions at time t can be expressed as N =

∑

µ Aµ.
We want to bound the probability of the event Aµ. In

order for a node u to receive µ, it must at some time τ com-
municate with a node v that had received µ earlier, so

Kt(u, µ) ⊆
⋃

τ,v

Cτ (u, v) ∩ Kτ (v, µ).

Applying the Union Bound, the fact that communication
partners are chosen independently of the data held, and the
upper bound of p on the probability of the events Cτ (u, v),
this yields

Prob[Kt(u, µ)] ≤
∑

τ,v

Prob[Cτ (u, v)] · Prob[Kτ (v, µ)]

≤ p ·
∑

τ,v

E [Kτ (v, µ)] .

Taking the Union Bound over all nodes u ∈ Dµ, we obtain
that Prob[Aµ] ≤ ∆ · p ·

∑

τ,v E [Kτ (v, µ)] .
By linearity of expectation, the number of messages µ

that have reached a destination by time t is the sum of the
probabilities for the events Aµ, taken over all messages µ.

E [N ] =
∑

µ

Prob[Aµ]

≤ ∆ · p ·
∑

µ,τ,v

E [Kτ (v, µ)]

= ∆ · p · E

[

∑

τ,µ,v

Kτ (v, µ)

]

.

At time 0, each message µ is only known to its source
sµ, so

∑

v,µ K0(v, µ) = m. During each round of commu-
nication, exactly n calls are made, and each call transmits at
most β messages. Hence, there are at most n ·β pairs (µ, v)
such that Kτ (v, µ) = 0 and Kτ+1(v, µ) = 1. By induction,
it is easy to see that for all times τ ≤ t,

∑

v,µ Kτ (v, µ) ≤ βτ · n + m ≤ βt · n + m

Hence, the above expectation can be bounded as

E [N ] ≤ ∆ · p · E

[

∑

τ

(βt · n + m)

]

= ∆ · p · t · (βtn + m),

completing the proof.

As a corollary, we obtain a result for spatial gossip with
exponent ρ < 1, packets with a unique destination, and the
restriction that at most one message is forwarded in each
communication step.

Corollary 3.2 For spatial gossip with exponent ρ < 1 and
the number of messages restricted to 1 per communication,
we obtain that in logκ n rounds, the expected number of
successfully routed messages is O(nρ log2κ n), and in par-
ticular o(n).

3.2. Resource Location with ρ < 1 or ρ > 2.

For exponent ρ > 2, the impossibility of resource loca-
tion results from messages traveling too slowly: with high
probability, it takes time Ω(nρ−2) for a message to travel
distance n along the line (this was proved in [14]). Hence,
if there is only one resource at node 1, node n will only find
out about any resource after time Ω(nρ−2).

For the rest of this section, we consider the resource lo-
cation problem for ρ < 1. Let X be the subset of nodes con-
sisting of the resource-holders. We will say that an atomic
resource location protocol is a t-round c-approximation if
after t rounds of communication, each node v has received
with high probability a copy of a message that originated at
a resource-holder r′ such that dv,r′ ≤ c · minr∈X dv,r.

We now show how to construct an instance of the re-
source location problem that essentially contains an in-
stance of the message routing problem described above. Let
ε < 1 − ρ and c = nε, and consider a set of n nodes in R

positioned at the points {1, 2, . . . , n}. There is a resource-
holder rj at each point of the form 2jc for natural numbers
j = 1, 2, . . . , n1−ε/2. Consider the node xj at the point
2jc − 1. The protocol will only be a c-approximation if
xj receives a forwarded copy of the message originating at
rj , and hence we have an instance of the message routing
problem with messages µr1

, . . . , µrn1−ε/2
; here, message

µrj
has source rj and destination xj .

From Theorem 3.1, applied to spatial gossip with pa-
rameter ρ < 1, m ≤ nt, and β and t poly-logarithmic in
n, we obtain that the expected number of nodes xj having
received a copy of a message originating at their nearest
resource is O(nρ logκ n) = o(n1−ε). For the remaining
Ω(n1−ε) nodes xj , the distance to their second-closest re-
source is at least by a factor c = nε larger than the distance
to the closest resource, proving the following corollary.

Corollary 3.3 Fix ρ < 1. For any ε < 1 − ρ, there is no
atomic resource location protocol based on spatial gossip
with exponent ρ that is a t-round nε-approximation, where
t and the number of messages β per communication step
are both poly-logarithmic in n.



4. Approximate Minimum Spanning Trees

In this section, we investigate protocols for a more com-
plex problem in a metric space: the construction of an ap-
proximate minimum spanning tree on a set of N terminal
nodes. In addition to designing an efficient protocol for this
problem, we are interested, as before, in the influence of the
underlying gossip mechanism. We first present a protocol
based on spatial gossip with exponent ρ ∈ [1, 2) that con-
structs a spanning tree within an O(log N) factor of mini-
mum. We then show that there is no atomic protocol based
on spatial gossip with exponent ρ < 1 that constructs a
spanning subgraph whose expected cost is within an O(N ε)
factor of minimum, for any ε < 1 − ρ.

As in Section 2, we begin with a set of n nodes located
at points spaced approximately uniformly in R

D. A subset
X of these nodes of size N ≤ n, called terminals, wishes to
construct an approximate minimum spanning tree T on X ,
using the underlying gossip mechanism. (Note that it will
not be necessary for all the terminals to be known to one
another at the start.) The output of the protocol is a spanning
tree T on X such that for each edge e = (x, y) of T , at
least one of the ends x or y has stored e. Hence, the tree is
represented in a distributed fashion among all the terminals.
Notice that we are not seeking to construct a Steiner tree
using the non-terminal nodes as Steiner nodes. The non-
terminals participate in the communication and distributed
computation effort, but the final tree contains only terminal
nodes.

4.1. A protocol for ρ ∈ [1, 2).

The motivating idea of the protocol is to approximately
simulate an execution of Boruvka’s MST algorithm [3, 20],
in which nodes repeatedly link to their nearest neighbors,
contract the resulting connected components, and iterate.
Unfortunately, if the protocol is to run in poly-logarithmic
time using gossip, it seems difficult to implement this algo-
rithm directly. First, using the guarantee from [13], we will
only be able to obtain an approximately nearest neighbor
for each node. This poses a problem, since the resulting set
of edges from nodes to their approximately nearest neigh-
bors need not be acyclic, and so the output may not even
be a tree. Moreover, it is not clear how to implement the
contraction of components in poly-logarithmic time.

We define an atomic protocol that runs in O(log N)
phases in expectation. In each phase, certain terminals will
be active, and the rest will be inactive. During a given
phase, all active terminals try to find an approximately near-
est neighbor among the other active terminals, and then add
an edge based on a random symmetry-breaking test to en-
sure that no cycle would be obtained.

In order to obtain approximation guarantees on the dis-

tance of the neighbor that can be found using gossip, we re-
quire the following Lemma 4.1, which is an easy corollary
of a result in [13]. For a path P with vertices v1, . . . , vk, let
its path distance be d(P ) =

∑k−1
i=1 dvi,vi+1

.

Lemma 4.1 For an exponent ρ ∈ [1, 2), there is a constant
c and a poly-logarithmic time-bound f , such that for any
two nodes v, w and any time τ , the execution of spatial gos-
sip with exponent ρ produces a time-respecting v-w path P
contained in the time interval [τ, τ + f(n)] of path distance
at most cdv,w with high probability.1

At the beginning of the protocol, all terminals are active,
and the protocol ends with exactly one active terminal. Each
phase lasts for f(n) rounds of gossip. We maintain the in-
variant that each inactive terminal will know the identity of
a single edge incident to it in the tree T .

In a given phase j, each node v (not only each terminal)
will try to determine the two active terminals that are clos-
est to it, and store this information in a set Sτ (v), where τ
denotes the time step within phase j. For purposes of ini-
tialization, we will imagine that there are two “dummy ter-
minals” ⊥1 and ⊥2, each at distance ∞ from all nodes. For
active terminals x, the set Sτ (x) begins the phase initialized
to {x,⊥1}, and for all other nodes v, the set is initialized to
{⊥1,⊥2}. Also, at the beginning of phase j, each active ter-
minal x chooses a random number πj(x) ∈ {1, 2, . . . , n3}.

All nodes then perform f(n) iterations of the spatial gos-
sip algorithm with an exponent ρ ∈ [1, 2). When w calls v
in a given step, w sends the (at most two) messages cor-
responding to the non-dummy elements of its current set
Sτ (w). This causes v to update Sτ (v) in the obvious way:
it chooses the two distinct closest nodes from among the
(at most four) nodes in the union Sτ (v) ∪ Sτ (w). For each
terminal x ∈ Sτ (v), node v also stores and forwards the
random number πj(x) associated with x.

At the end of the f(n) steps in phase j, each active ter-
minal x has a set Sτ (x) that consists, with high probabil-
ity, of its own name (at distance 0) and the name of some
other active terminal y. If πj(x) > πj(y), then x stores the
edge (x, y) as part of the eventual tree T and becomes inac-
tive for the remainder of the protocol; otherwise, x does not
store any edge and it remains active in phase j + 1.

This defines the full protocol. We note that it is atomic,
following the definition in Section 2. Theorem 4.2 provides
guarantees on the protocol’s performance.

Theorem 4.2 After an expected number of phases bounded
by O(log N), there is exactly one terminal left. At that
point, the edges stored by inactive terminals form a span-
ning tree whose cost is O(log N · C(X)) in expectation,
where C(X) is the cost of a minimum spanning tree on X .

1In fact, [13] shows that the length of the path is dv,w + o(dv,w) with
high probability.



Proof. We first argue that the protocol produces a span-
ning tree. Let E denote the set of edges constructed. By
induction on j, we see that every terminal x ∈ X has a path
in (X,E) to some terminal that was active in phase j. Since
there is only a single active terminal at the end of the pro-
tocol, this implies that (X,E) is connected. Now, suppose
that (X,E) contained a cycle Γ. We can orient each edge
e ∈ E from the terminal that stored e to the other end of
e. In this orientation, at most one edge leaves any node in
X , so Γ must be a directed cycle with respect to this orien-
tation. If we consider the terminal x on Γ that was active
for the maximum number of phases (say through phase j),
breaking ties for the x with minimum value πj(x), then we
obtain the following contradiction: x would not have con-
structed an edge to the next node on C. Thus, (X,E) is
both connected and acyclic, and hence a spanning tree.

In the remainder of the proof, we will bound the expected
cost of the spanning tree found by the protocol, by showing
that the expected number of phases is O(log N), and the
cost of edges added in any one phase is within a constant
factor of the minimum spanning tree cost C(X). The cen-
tral fact is the following lemma.

Lemma 4.3 Let j be a phase with at least two active ter-
minals. Let x be a terminal active in phase j, and y the
closest other active terminal to x. With high probability, at
the end of phase j, Sτ (x) will contain x and another active
terminal y′ with the property that dx,y′ ≤ c · dx,y (where c
is the constant from Lemma 4.1).

Proof. Let τ∗ denote the time step in which phase j be-
gins. For purposes of the analysis, we will imagine that for
every node v, there are edges to v from each of the two
dummy terminals ⊥1 and ⊥2 with time label τ∗; in the con-
text of the discussion below, it will be important that such a
single edge is a time-respecting path contained in the time
interval [τ∗, τ∗].

At a given time τ ≥ τ∗, we define the bundle of paths
incident to a node v, denoted Bτ (v), as follows. Let
x1, . . . , xr be the active terminals (including ⊥1 and ⊥2)
such that there is a time-respecting xi-v path in the in-
terval [τ∗, τ ] (note that r ≥ 2.) For each xi, choose
a time-respecting xi-v path Pi whose path distance is as
small as possible; and assume the indexing is such that
d(P1) ≤ d(P2) ≤ . . . ≤ d(Pr). The bundle Bτ (x) is
then the r-tuple of paths (P1, P2, . . . , Pr). We prove the
following statement by induction on τ ≥ τ ∗.

(∗) Let v be any node, and let Bτ (v) =
(P1, P2, . . . , Pr). Then the set Sτ (v) contains
distinct nodes x′

1 and x′

2 such that dx,x′

1
≤ d(P1)

and dx,x′

2
≤ d(P2).

Observe first that, by the initialization step, the condition
(∗) holds at time τ∗.

For the induction step, we consider the effect of the mes-
sage(s) from w to v at time τ + 1. We will suppose for sim-
plicity that these are the only messages received by v at time
τ +1; however, messages from other nodes at time τ +1 are
easily handled by applying the following argument sequen-
tially over each. If the bundles Bτ (v) and Bτ (w) just before
the sending of the message(s) are equal to (P1, P2, . . . , Pr)
and (P ′

1, . . . , P
′

s), respectively, the bundle Bτ+1(v) after
the call can be constructed by merging in a path P ′

i · (w, v)
for each P ′

i ∈ Bτ (w), and subsequently eliminating the
longer one among two paths originating with the same ter-
minal. By the induction hypothesis, there is a terminal
y1 ∈ Sτ (w) such that dy1,w ≤ d(P ′

1); hence, by the tri-
angle inequality, dy1,v ≤ d(P ′

1) + dw,v = d(P ′

1 · (w, v)).
Also, the other node y2 ∈ Sτ (w) satisfies dy2,w ≤ d(P ′

2),
and analogously we have dy2,v ≤ d(P ′

2 · (w, v)). Thus, the
smallest two distances from v to nodes in the union of Sτ (v)
and Sτ (w) will be at most the corresponding minima of the
path distances of P1, P2, P

′

1 · (w, v), P ′

2 · (w, v), and so the
induction step follows.

Now, for an active terminal x, let y be the closest active
terminal other than x itself. By Lemma 4.1, there will, with
high probability, be a time-respecting path of path-distance
at most c ·dx,y by the end of the phase, so the other terminal
y′ 6= x that is contained in Sτ (x) at the end of phase j will
satisfy dx,y′ ≤ c · dx,y , completing the proof.

As a consequence of Lemma 4.3, each active terminal x
with high probability has another active terminal y (not a
dummy terminal) in its set Sτ (x) at the end of any phase.
With probability 1

2 − o(1), we have πj(x) > πj(y), and
so an edge will be formed. Hence each terminal becomes
inactive in each phase with probability 1

2 − o(1), and so the
expected number of phases is O(log N).

It remains to bound the cost of the edges added in one
phase. Let Xj denote the set of active terminals in phase
j. Since Xj ⊆ X , the Steiner ratio in metric spaces im-
plies that C(Xj) ≤ 2C(X). We know that the mini-
mum spanning tree on Xj includes a shortest edge inci-
dent to each node; thus, if each node in Xj were to con-
struct such a shortest edge, the total edge length — count-
ing an edge twice if it is constructed from both ends —
would be at most 2C(Xj). However, each node in Xj ac-
tually constructs an edge that is within a factor c of short-
est; hence, the total edge length added in phase j is at most
2c · C(Xj) ≤ 4c · C(X), completing the proof.

4.2. Impossibility results for ρ < 1 and ρ > 2.

The impossibility for exponent ρ > 2 can be shown
with a very simple example. There are n nodes at posi-
tions {1, . . . , n} on the line, and the set of terminals is
X = {1, n}. It was proved in [14] that with high proba-
bility, it will take time Ω(nρ−2) until a message originating



with nodes 1 or n has traveled distance n − 1, and until
that point, no edge can be stored at either node. Thus, with
high probability, it takes time Ω(nρ−2) until any spanning
subgraph is constructed.

For the remainder of this section, we will prove the im-
possibility with exponents ρ < 1. We will say that an
atomic minimum spanning tree protocol on a set of termi-
nals X is a t-round c-approximation if after t rounds of
communication the following holds: there is a spanning
subgraph (X,E) of total cost at most c · C(X) so that, for
each e = (v, w) ∈ E, at least one of v or w has received
a message that originated at the other. (Note that this is in
fact a much weaker condition than is satisfied by our proto-
col above.)

As another corollary of Theorem 3.1, we now derive an
impossibility result for atomic minimum spanning tree pro-
tocols based on spatial gossip with exponent ρ < 1. Specif-
ically, choose any ε < 1 − ρ, and let κ = 1−ε+ρ

2ρ
, and

δ = Nκ+ε−1. Notice that 1 < κ < 1−ε
ρ

. For a given
number N of terminals, let n = Nκ be the total number
of nodes, which are placed at equal distance 1 on the line.
The N terminals are the nodes with coordinates i · δ + j, for
i = 0, . . . , N1−ε − 1 and j = 1, . . . N ε, where the nodes
for a particular i are said to form a cluster.

For an edge e = (u, v) to be considered part of a span-
ning subgraph, at least one of the nodes u, v must have re-
ceived a message originating at the other. In a good approx-
imate spanning tree, most nodes should have edges within
their cluster, so we are considering messages µτ (v) whose
destination set consists of all other N ε − 1 nodes in v’s
cluster. Each node v may generate at most one new such
message in each time step τ , so the number of messages is
m ≤ N · t.

By applying Theorem 3.1 to the above routing problem,
we obtain that the expected number of messages having
reached one of their destinations by time t is bounded by
O(β · n ·N ε · nρ−1t2) = O(Nκρ+εβt2) = o(N) whenever
both β and t are poly-logarithmic, by the upper bound on
κ. This is an upper bound on the number of edges both of
whose endpoints lie within the same cluster, and hence also
an upper bound on the number of edges with cost less than
δ −N ε. Because κ > 1, this cost δ −N ε = Nκ+ε−1 −N ε

is Ω(Nκ+ε−1).
Since any spanning subgraph must contain Ω(N) edges,

of which in expectation only o(N) can have cost less
than Ω(Nκ+ε−1), the solution has expected cost at least
Ω(N ·Nκ+ε−1) = Ω(Nκ+ε). However, the minimum span-
ning tree has cost at most n − 1 = O(Nκ), and hence the
solution found by the protocol cannot approximate the min-
imum spanning tree by a factor of O(N ε) with respect to
expected cost, proving the following theorem.

Theorem 4.4 Consider any atomic protocol for computing
an approximately cheapest spanning subgraph, based on

spatial gossip with exponent ρ < 1. If each node can send
only a poly-logarithmic number β of messages per round,
and if the protocol runs for a poly-logarithmic number of
rounds, then the expected cost of the spanning subgraph it
produces will be at least a factor of Ω(N ε) larger than the
cost of a minimum spanning tree, for any ε < 1 − ρ.

5. Routing permutations

In this section, we further investigate the problem of
message routing. We show that for exponent ρ = 1, there
is a simple protocol routing a set of messages in poly-
logarithmic time, with high probability. We complete the
trichotomy presented in Section 1 by showing that there are
permutations that cannot be routed by any protocol building
on top of spatial gossip with exponent ρ > 1. Finally, we
show how to extend the analysis of the simple protocol with
ρ = 1 to apply in the case of the protocol running for an
indefinite time, with continuously arriving messages.

5.1. A simple protocol for exponent ρ = 1

We consider a protocol which uses the metric defined by
the length of the unique path between two leaves in the “vir-
tual” balanced binary tree (see Section 2). This keeps the
description and proofs cleaner — however, the results ex-
tend to other metric spaces as well. Each node v has a queue
Qv in which it stores its current set of messages. The proto-
col is parametrized by an arbitrary queueing discipline, and
in each round, each node v executes the following.

Choose a message µ according to the queueing
discipline, and a communication partner w ac-
cording to the underlying spatial gossip scheme.
If w is strictly closer to the destination dµ than v,
then forward µ to w; else do nothing.

We let Z denote the time at which the last message µ
reaches its destination, and give high-probability bounds for
Z. The bounds certainly depend on how many packets orig-
inate with or are destined for any one node. For a node v,
let its message volume lv be the number of messages µ such
that sµ = v or dµ = v, and let L be an upper bound on lv
for all nodes v. The guarantee for the protocol is as follows:

Theorem 5.1 Fix a constant a > 2L · log3 n. With prob-

ability at least 1 − (n · e
−

(a−2L log3 n)2

16L log5 n + n · L · e−
a

8 log n ),
all messages µ have reached their destination by time a,
i.e. Z ≤ a.

The proof of this theorem will be given in the full version
of the paper. The intuition is as follows: we first bound the
number of messages that visit any one node v by O(L log n)



with high probability. To this end, it is crucial to notice that
the paths of different messages are created independently,
which allows us to apply Chernoff Bounds. The probability
of a node v seeing a message with destination w at distance
i from v is at most 2−i, and there are 2i such nodes w, each
the destination of at most L messages.

As a second step, we notice that any message can be
delayed by at most all messages whose path it meets, and
each message’s waiting time at the front of the queue is
distributed as a geometric variable with success probabil-
ity 1/ log n. Because each message is forwarded at most
log n times, its arrival time is bounded by the sum of
O(L log2 n) such geometric variables, which has expecta-
tion O(L log3 n). We obtain the desired high-probability
result using Chernoff bounds and union bounds.

By plugging in particular values of L and a, we obtain
the following corollary:

Corollary 5.2 The routing is accomplished in O(L log3 n)
with probability at least 1 − 2/n. In particular, a permu-
tation is routed in O(log3 n) steps with probability at least
1 − 2/n.

5.2. Impossibility of routing with exponent ρ > 1

We now complete the proof of the trichotomy stated in
Section 1 by proving that there are routing assignments
which cannot be routed in poly-logarithmic time using spa-
tial gossip with exponent ρ > 1.

For simplicity, we prove this result for the metric of path
distances in the “virtual” binary tree (see Section 2). In our
routing assignment, each node i is the source of a message
with destination n − i, i.e. a total of n messages have to
cross into the other subtree of height log n − 1.

Theorem 5.3 Consider any protocol which is restricted to
forwarding at most β messages during any one communi-
cation step. The expected number of messages that reach
their destination by time t when spatial gossip with expo-
nent ρ > 1 is used is O(n2−ρ · βt).

Proof. By definition of the spatial gossip mechanism, in
each round, each node u ≤ n/2 communicates with a node
v > n/2 with probability O(n1−ρ), hence over all of the
n/2 such nodes u, at most O(n2−ρ) pairs of nodes (u, v)
with u ≤ n/2 and v > n/2 communicate during any one
round on expectation. In each such communication, at most
β messages are forwarded, and this is done for at most t
rounds. Hence, at most O(n2−ρ · βt) messages cross into
the other subtree in expectation, and crossing into the other
subtree is necessary to reach the destination.

Notice that the limitation for exponents ρ > 1 is very
different from the one for exponents ρ < 1. Here, the prob-
lem is simply one of limited “bandwidth”, so even knowl-
edge of future random outcomes is not sufficient. On the

other hand, for small exponents, the problem was the lack
of structure among the connections that would help in guid-
ing messages.

By choosing both β and t poly-logarithmic in n in the
above theorem, we obtain that only o(n) messages reach
their destination in poly-logarithmic time.

5.3. Dynamically arriving messages

In a real-world system employing a gossip-style mecha-
nism for message forwarding, the emphasis is usually on
having the system run for an indefinite amount of time,
whereas the above analysis implicitly assumed that packets
were only being injected and forwarded starting at a specific
time, and after successful delivery of all packets, the system
was stopped. Here, we extend the analysis to the case of a
system running for an indefinite time.

As a simple model for message arrival, we assume that
in each time step, and for each pair (u, v) of nodes, a new
message µ with source sµ = u and destination dµ = v is
generated independently with probability γ = O( 1

n log4 n
).

Note that this means that on average, each node u becomes
the source of a new message every O(log4 n) rounds. The
routing protocol is essentially unchanged from the previous
section, except that we specify that nodes v with more than
one queued packet will use the longest-in-system (LIS) rule
to select the packet to forward. This rule specifies that at
any time, a node tries to forward the packet from its queue
which has its injection longest in the past. In this model, we
obtain the following guarantee on the protocol:

Theorem 5.4 For any message µ, the time from its injection
until its delivery is at most O(κ log8 n), with probability at
least 1 − 1

nκ . In particular, the system is stable.

We use the result from Theorem 5.1 in the proof, but it
is obvious that the techniques employed there will not be
sufficient. Over the execution of the protocol, any queue
length or waiting time will eventually be exceeded, so our
goal will be to show that such bad events happen rarely, and
in particular, that the system recovers quickly enough from
them. The proof is left to the full version of this paper, but
we will present an outline here.

Strictly for the purpose of analyzing the protocol, we
consider a “batched” version of the problem, in which time
is divided into windows. Messages arriving during one win-
dow are stored until all messages from the previous window
have reached their destinations, at which point they are re-
leased into the system, and routed as in Section 5.1. By the
choice of the message generation probability, the routing
assignment will be sufficiently permutation-like to give an
expected routing time O(log4 n). By making the windows
slightly longer than the expected routing time, the protocol
has “time to spare”.



Now, we consider the random variable Yj which char-
acterizes how much behind schedule the jth batch is. The
intuition of a batch having time to spare in order to catch up
with delays caused by previous batches can be formalized
as the sequence (Yj) having sufficiently large negative drift
whenever it exceeds a certain bound. After showing that
the sequence is not too “jumpy”, i.e. the sequence of differ-
ences (Yj+1 − Yj) has an exponentially decreasing tail, we
can apply a Theorem by Hajek [9] to obtain high-probability
bounds for the delay staying bounded by a poly-logarithmic
time bound.

Finally, to complete the proof, we prove the intuitive fact
that the delay of a batch of messages does not increase if
they are actually released at their arrival times instead of
the time at which the previous batch finishes. Here, it is
important to notice that the LIS queueing discipline ensures
that messages from later batches do not interfere with the
completion of earlier batches.
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