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ABSTRACT
We study the problem of selecting a subset of k random
variables to observe that will yield the best linear prediction
of another variable of interest, given the pairwise correla-
tions between the observation variables and the predictor
variable. Under approximation preserving reductions, this
problem is also equivalent to the “sparse approximation”
problem of approximating signals concisely.

We propose and analyze exact and approximation algo-
rithms for several special cases of practical interest. We
give an FPTAS when the covariance matrix has constant
bandwidth, and exact algorithms when the associated co-
variance graph, consisting of edges for pairs of variables with
non-zero correlation, forms a tree or has a large (known) in-
dependent set. Furthermore, we give an exact algorithm
when the variables can be embedded into a line such that
the covariance decreases exponentially in the distance, and
a constant-factor approximation when the variables have no
“conditional suppressor variables”.

Much of our reasoning is based on perturbation results
for the R2 multiple correlation measure, frequently used as
a measure for “goodness-of-fit statistics”. It lies at the core
of our FPTAS, and also allows us to extend exact algorithms
to approximation algorithms when the matrix “nearly” falls
into one of the above classes. We also use perturbation
analysis to prove approximation guarantees for the widely
used “Forward Regression” heuristic when the observation
variables are nearly independent.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory
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1. INTRODUCTION
One of the most important algorithmic questions faced

by data-driven sciences is to select the “most informative”
subset from among a large set of observable attributes or pa-
rameters, to predict a particular quantity of interest. The
setup is usually as follows: a large number of variables Xi

can be (in principle) observed, and the researcher is inter-
ested in the value of a predictor variable Z. Due to time or
cost constraints, it is not feasible to sample all the variables
every time a prediction of Z is required. Frequently, offline,
cost-intensive studies exist that reveal detailed information
about the correlations between the Xi and Z. Based on this
information, the goal is to select a (much smaller) subset of
k variables Xi to predict Z in the future. This problem of
selecting the k-subset of variables that “best” predicts Z is
known as the subset selection problem for regression [21].

Natural applications of this problem abound. In medical
or social studies, one often wants to predict risks or future
behaviors (heart disease, failure in school, . . .) in terms of
observable quantities (blood pressure, parents’ income, . . .).
The goal is to identify a small set of attributes for future
tests. Similarly, in sensor networks, one often wants to sam-
ple a smaller number of sensors (in order to conserve energy),
while obtaining accurate predictions of aggregate quantities.

In many of these scenarios, once a small set S of k vari-
ables has been chosen, the prediction for Z is determined
via linear regression, i.e., as a linear combination

P

i αiXi

with appropriately fitted coefficients αi. The past observed
correlation between the Xi and Z is characterized in terms
of the covariance matrix C between the Xi, and the vector
b of covariances between Z and the Xi. The optimization
problem can then be phrased as follows:

Given C and b, find a set S of size at most k so
as to minimize the mean squared prediction er-
ror [10, 18] Err(Z, S) := E

ˆ

(Z − P

i∈S αiXi)
2
˜

,
where the αi are the optimal regression coeffi-
cients specifically for the set S. Alternatively,
maximize the squared multiple correlation [10]

R2
Z,S :=

Var[Z]−E[(Z−
P

i∈S αiXi)
2]

Var[Z]
.

The squared multiple correlation is proportional to the
error reduction (Var[Z]-Err(Z, S)) of Z due to S. It can
intuitively be viewed as the proportion of variance of the
predictor variable that can be explained by the set of obser-
vation variables, and is often used in the statistics literature
[4, 13, 26] to measure the quality of prediction during regres-
sion analysis. While other functions are also frequently used



to measure the accuracy of regression (such as conditional
entropy [1], mean absolute error, etc.), we only focus on the
above two objectives in this paper. Naturally, the optimiza-
tion problems for both are equivalent at optimality, but the
two functions differ significantly in terms of approximation
and hardness results.

1.1 Our Results
The subset-selection problem is NP-hard in general. In

fact, it is even NP-hard to decide whether any k-subset re-
duces the mean squared prediction error to 0 [8]. As a result,
no multiplicative approximation guarantee for the Err(Z, S)
objective is possible in general. Due to the highly non-linear
nature of either objective function, a general approximation
for R2

Z,S also seems very hard to obtain (though no approx-
imation hardness result is known). It is therefore desirable
to identify natural special cases amenable to efficient (ap-
proximation) algorithms for the R2

Z,S objective. To char-
acterize such instances, we define the covariance graph on
the node set {Z, X1, . . . , Xn}, with edges between any pair
of variables with non-zero covariance. Our main contribu-
tion consists of algorithms for several classes of covariance
graphs.

In order to prove these results, we first derive (in Section
3) a set of general perturbation results for the R2

Z,S objec-
tive. These results bound the effect of (small) perturbations
in the covariance matrix C and covariance vector b, so long
as C is well-conditioned. One implication of these results is
that correlations smaller than some ǫ can be ignored without
changing the quality of the solution much. Thus, algorithms
for a given class of covariance graphs yield algorithms with
nearly the same guarantees for cases when the edges corre-
sponding to covariance exceeding ǫ form a covariance graph
in that class.

A second application of our perturbation results is an ap-
proximation guarantee, both for the Err(Z, S) and R2

Z,S ob-
jectives, for the widely used Forward Regression heuristic
(also known as Forward Selection, and defined in Section
3.1), under the assumption that the Xi variables have small
correlations. The guarantees for Err(Z, S) are similar to
those in [14, 32] for slightly different greedy heuristics, un-
der similar independence assumptions.

In terms of the covariance graph G induced by Z and
the Xi, the previous result assumes G to be a star (except
for edges of covariance at most ǫ) rooted at Z. We subse-
quently derive the following results for more general classes
of covariance graphs. In all cases, our perturbation bounds
yield approximate versions of these results when additional
edges exist with covariances at most ǫ.

1. An FPTAS for the R2
Z,S objective, for the case when

the subgraph of G induced only by the Xi has constant
bandwidth, with Z being allowed arbitrary connec-
tions. This case has applications for time series anal-
ysis, when the Xi represent samples at regular time
intervals, and correlations between the Xi exist only
within sufficiently short time intervals (Section 4).

2. An exact algorithm for the case when G forms a tree.
This is a significant and non-trivial generalization of
the case of a star, which was studied previously (Sec-
tion 5), and motivated by connections with tree models
in machine learning.

3. An exact algorithm when G has a (known) indepen-
dent set containing all but a constant number of vari-
ables (Section 6). This case is important for subset
selection in practice when we have a set of indepen-
dent variables, along with a constant number of aggre-
gate statistics about these variables which can also be
observed.

Finally, we depart from the graph-based view, and inves-
tigate two special types of covariance matrices:

1. If the variables can be embedded into a line such that
the covariances decrease exponentially in the distance,
then we obtain an exact algorithm (Section 7). This
special case arises for multiplicative-decrease, random-
increase processes over time. It also constitutes a first
step toward a more thorough understanding of the op-
timization problem for variables embedded in some
metric space with covariances monotonically decreas-
ing in the distance, which has clear applications in
modeling sensor networks.

2. If the instance has no “suppressor variables” (variables
Xi which seem uncorrelated with Z until another vari-
able Xj has been sampled), then we prove that For-
ward Regression gives a (1 − 1/e) approximation for
maximizing R2

Z,S (Section 8). This result is important
in that it has been observed empirically in the past
[5, 36] that much of the difficulty in subset selection
results from such “suppressor variables”. Our result
confirms this empirical observation analytically.

1.2 Related Work
With the advent of sensor networks, much recent work has

focused on tradeoffs between the accuracy in measurements
and the energy expended in retrieving data. Deshpande et
al. [9] use statistical models of sensor data to extrapolate
sensor readings based on already collected sensor data, and
reduce the number of sensors needed to answer a given query.
Guestrin et al. [15] and Anstreicher et al. [1, 19] study re-
lated problems that deal with maximizing the entropy or
mutual information of a subset: the aim is to find the most
informative k-subset in a set of sensors, measured in terms
of the joint entropy or mutual information of the subset of
variables. Recently, Liaskovitis and Schurgers suggested
a formulation essentially equivalent to the subset selection
problem for choosing sensor sets to sample [20].

The formulation of the subset selection problem presented
in this paper coincides with that in the statistics commu-
nity [21]. Many heuristics have been proposed; the book
by Miller [21] contains an extensive summary. Some of the
well-known methods are Forward, Backward and Stepwise
Regression, and Branch and Bound techniques. While there
has not been any rigorous algorithmic analysis of Forward
and Stepwise Regression, Couvreur and Bressler [7] analyzed
Backward Regression and showed that if the optimal predic-
tion error is smaller than a certain threshold, Backward Re-
gression will select the optimal subset. However, [7] points
out that calculating this threshold might itself be NP-hard.

Instead of restricting the number of variables sampled,
other widely used regression models such as the Lasso method
[31], and the Elastic Net [39], prescribe different constraints
on the regression coefficient vectors. For instance, the Lasso
method gives an upper bound on the l1 norm of the regres-
sion coefficients vector (whereas the set size constraint can



be interpreted as a bound on the l0 norm), which results in
a convex optimization problem.

In the mathematics and signal processing communities,
subset selection has been studied in the context of “sparse
approximation”. In this context, the problem consists of se-
lecting a “sparse” subset from among a large dictionary φ of
m vectors {di ∈ R

n | 1 ≤ i ≤ m}, whose linear combination
best approximates a given signal vector y ∈ R

n in the least
square error sense. One formulation of this problem, equiv-
alent to subset selection under approximation-preserving re-
ductions, involves finding the best approximation of the in-
put vector using at most k basis vectors from φ.

A paper by Gilbert et al. [14] was the first to rigorously
prove approximation bounds of greedy solutions for the above-
mentioned sparse approximation formulation, assuming nearly
orthogonal dictionaries. They analyze a two-stage algo-
rithm consisting of two slightly different greedy heuristics:
“Matching Pursuit” and “Orthogonal Matching Pursuit”.
The approximation guarantees were subsequently improved
by Tropp et al. [35, 32], the latter paper using just a sin-
gle stage of greedy Orthogonal Matching Pursuit. Since the
bounds of [14, 35, 32] are similar to our bounds for Forward
Regression, we defer a precise statement and comparison to
Section 3.1. Tropp [33] also presents a detailed study of
variants of sparse approximation, and provides interesting
results regarding the performance of greedy and convex re-
laxation methods when the dictionary is almost orthogonal.

Another commonly studied version of the sparse approxi-
mation problem in the signal processing community involves
minimizing the number of basis vectors needed to achieve a
desired estimation error ǫ in predicting the input vector.
Assuming an n × m dictionary φ, the aim is to find a co-
efficient vector α0 ∈ R

m that minimizes ‖α0‖0 subject to
‖y − φα0‖2 ≤ ǫ. Natarajan [23] proved a weak approxima-
tion bound on the performance of a greedy algorithm for this
problem. This problem has also been studied extensively in
recent years in the context of sparse signal recovery from
a set of noisy observations [3, 12, 11, 34, 37]. Almost all
of these results use convex relaxation techniques to replace
the l0 norm constraint with an l1 norm constraint, and solve
the corresponding convex optimization problem. They then
prove certain sparsity conditions under which the coefficient
vector α1 retrieved using l1 relaxation can approximate the
optimal coefficient vector α0. In particular, recent results
by Candes et al. [3] and Donoho [11] show that if the opti-
mal coefficient vector is sufficiently sparse, then for all dic-
tionary matrices satisfying an isometry condition, the α1

vector obeys ‖α1 − α0‖2 ≤ cǫ, for a given constant c.
In the mathematical approximation theory community,

Temlyakov [29, 30] analyzed convergence theorems to prove
bounds on the power decay of approximation using sophisti-
cated mathematical techniques in Hilbert and Banach spaces.

2. PRELIMINARIES
The goal is to estimate a predictor variable Z using a

small subset of the observation variables X1, . . . , Xn. By
appropriately scaling Xi − E [Xi], we can assume without
loss of generality that all random variables have expectation
0 and variance 1.

Var[Xi], Cov[Xi, Xj ] and ρ(Xi, Xj) denote the variance,
covariance and correlation of random variables, respectively.
The matrix of covariances between Xi and Xj is denoted by
C, so ci,j = Cov[Xi, Xj ]. The vector b denotes the covari-

ances between Z and the Xi, so bi = Cov[Z, Xi]. Recall
[16] that a matrix C is a covariance matrix iff it is positive
semi-definite. We use CS to denote the submatrix with row
and column set S, and bS to denote the vector with only
entries bi for i ∈ S.

We denote the eigenvalues of an n × n symmetric ma-
trix A as λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A). We use the
following matrix and vector norms: ‖x‖2 =

p
P

i(xi)2,
‖x‖∞ = maxi |xi|, ‖A‖2 = max‖x‖2=1 ‖Ax‖2 and ‖A‖∞ =
max‖x‖∞=1 ‖Ax‖∞. It is easy to see that ‖A‖2 = λ1(A),
and ‖A‖∞ = maxi

P

j |aij |. The condition number of the

matrix A is defined as κ(A) = ‖A‖2‖A−1‖2.
We want to select and sample a set S of at most k variables

Xi, and output a linear predictor Z′ =
P

i∈S αiXi of Z. The
goal is to choose the set S and the coefficients αi so as to
minimize the mean square prediction error E

ˆ

(Z − Z′)2
˜

,
or, equivalently, maximize the squared multiple correlation

R2
Z,S :=

Var[Z]−E[(Z−Z′)2]
Var[Z]

[10, 18]. The latter is a widely

used measure for the goodness of a statistical fit; it captures
the fraction of the variance of Z caused by variables in S.
Because we assumed Z to be normalized to have variance 1,
it simplifies to R2

Z,S = 1 − E
ˆ

(Z − Z′)2
˜

.
For notational convenience, we will frequently not dis-

tinguish between the index set S and the variables {Xi |
i ∈ S}. Given the subset S of variables used for predic-
tion, the optimal regression coefficients αi are well known
to be aS = (αi)i∈S = C−1

S · bS (see, e.g., [18]), and hence
R2

Z,S = bS
T (C−1

S )T bS. Thus, the subset selection problem
can be phrased as follows:

Definition 2.1 (Subset Selection). Given C, b, and
k, select a set S of k variables to minimize the mean square
prediction error Err(Z, S) = Var[Z] −bS

T (C−1
S )T bS. Equiv-

alently, maximize R2
Z,S = bS

T (C−1
S )T bS.1

For notational convenience, we define the following stan-
dard quantities (see [10]).

Definition 2.2 (Residual, Semipartial Correlation).
The random variable Res(Z, S) = Z − P

i∈S αiXi is called
the residual of Z with respect to the Xi for i ∈ S. It captures
the part of Z not correlated with Xi for all i ∈ S.

The semipartial correlation Corr(Z, X/Y ) = ρ(Z, Res(X, Y ))
is the correlation between Z and the residual of X with re-
spect to the variable Y .

The following basic lemmas about residuals and squared
multiple correlations will be particularly useful. Their proofs
involve fairly standard manipulations, and are omitted from
this version due to space constraints.

Lemma 2.3. For any random variables Z, Y and a set of
random variables S,

Res(Z, S ∪ {Y }) = Res(Res(Z, S), {Res(Y, S)})

Lemma 2.4. For any random variables Z, Y and a set of
random variables S, R2

Z,S∪{Y } = R2
Z,S + R2

Z,{Res(Y,S)}.

The subset selection problem from Definition 2.1 is equiva-
lent to the sparse approximation problem [14, 33], via straight-
forward approximation preserving reductions. The reduc-
tion from sparse approximation to subset selection defines
1We assume throughout that CS is non-singular. For some
of our results, an extension to singular matrices is possible
using the Moore-Penrose generalized inverse.



the covariance Cov[Xi, Xj ] to be equal to the inner prod-
uct of the ith and jth vectors of the dictionary. This tech-
nique is also useful in practice for the best estimate of the
covariance matrix from empirical joint observations of the
observation variables Xi. The other direction defines the
dictionary through the Cholesky Decomposition of the co-
variance matrix C. Details are deferred to the full version
of this paper due to space constraints.

As shown in [8, 23, 22] (where the results are phrased
equivalently in terms of sparse approximation), the sub-
set selection problem is NP-complete, and the minimization
version can in general not be approximated to within any
constant. In fact, Muthukrishnan [22] shows that unless

P ⊆ DTIME[nO(log log n)], there is no polynomial-time ap-
proximation algorithm approximating the error within any
constant α, while using at most O(k log n) random variables.

We therefore focus on natural special classes of the subset
selection problem. Specifically, we propose restricting the
graph structure of the covariance matrix to identify more
tractable scenarios. Formally, we define:

Definition 2.5 (Covariance Graphs). For any ǫ ≥
0, the covariance graph Gǫ(C,b) of C,b is the graph with
node set {X0 := Z, X1, . . . , Xn} and edges between any pair
of variables Xi, Xj with Cov[Xi, Xj ] ≥ ǫ. For simplicity, we
write G(C,b) := G0(C,b).

The covariance graph on observation variables only is de-
noted by G̃ǫ(C), with node set {X1, . . . , Xn}, and otherwise
defined analogously to Gǫ(C,b).

3. MATRIX PERTURBATION BOUNDS
In this section, we employ matrix perturbation bounds to

show that for sufficiently well-conditioned covariance matri-
ces C, small perturbations to the matrix only cause small
changes in the R2

Z,S objective function.

Lemma 3.1. Assume that the k × k covariance matrix C
is non-singular, and let κ be its condition number. Let E be
a k× k error matrix whose largest entry in absolute value is

at most δ ≤ 1
4κk

. Then, |bT C−1b−bT (C+E)−1b|

|bT C−1b|
≤ 4

3
κ2kδ.

Thus, so long as the covariances between any pair of ob-
servation variables are changed by no more than a small
δ, the relative change in the error reduction for a set S of
size k is at most 4

3
κ2kδ. There are simple examples that

show that small perturbations can cause large changes in
the error reduction if the matrix is nearly singular; hence,
the dependence of the bound on κ is necessary.

Proof. Using linearity, the Cauchy-Schwartz Inequality,
and the definition of an induced matrix norm, we first obtain

the bound |bT C−1b−bT (C+E)−1b|

|bT C−1b|
≤ ‖b‖2

2‖(C+E)−1−C−1‖2

|bT C−1b|
.

By considering the representation of b in terms of an or-
thonormal set of eigenvectors of C−1, it is not difficult to
prove that |bT C−1b| ≥ 1

λ1(C)
‖b‖2

2. Hence, we have that

|bT C−1b−bT (C+E)−1b|

|bT C−1b|
≤ λ1‖(C + E)−1 − C−1‖2.

To bound the right-hand side, we can invoke a well-known
theorem from perturbation theory of matrix inverses, The-
orem III.2.5 from [28]. Assuming that ‖C−1E‖2 < 1, the
theorem, submultiplicativity of matrix norms, and the fact
that ‖C−1‖2 = 1/λk, together imply that

λ1‖(C + E)−1 − C−1‖2 ≤ λ1
‖C−1E‖2

1−‖C−1E‖2
· ‖C−1‖2

≤ λ1
‖C−1‖2‖E‖2

1−‖C−1‖2‖E‖2
· ‖C−1‖2 ≤ κ2 ‖E‖2

‖C‖2−κ‖E‖2
.

If each entry of E is at most δ, then ‖E‖2 ≤ δk. Also,
‖C‖2 ≥ 1, because the length of C · (1, 0, 0, . . . , 0) is at least
1. Substituting these now proves the lemma.

Applying the above lemma to the case where C is the
identity matrix, i.e., none of the observation variables are
linearly correlated, gives us the following corollary:

Corollary 3.2. If k normalized random variables have
pairwise covariances of at most δ ≤ 1

4k
, then the error reduc-

tion in Z from this set satisfies
|R2

Z,X1,...,Xk
−

Pk
i=1 b2i |

P

k
i=1 b2

i

≤ 4
3
δk.

Using a similar analysis, we also obtain a perturbation
bound for the covariance vector b.

Lemma 3.3. Assume that the k×k covariance matrix C is
non-singular, and let κ = κ(C) > 0 be its condition number.

Let e be a k-dimensional error vector, such that ‖e‖2
‖b‖2

≤ δ,

where δ ≤ 1
4κk

. Then, |(b+e)T C−1(b+e)−bT C−1b|

|bT C−1b|
≤ 3κδ.

Proof. Using linearity, the Cauchy-Schwartz Inequality,
and the definition of an induced matrix norm, we first obtain

|(b+e)T C−1(b+e)−bT C−1b|

|bT C−1b|
≤ ‖2b+e‖2‖C−1‖2‖e‖2

|bT C−1b|
.

By considering the representation of b in terms of an or-
thonormal set of eigenvectors of C−1, it can be seen that

|bT C−1b| ≥ 1
λ1

‖b‖2
2. Hence, |(b+e)T C−1(b+e)−bT C−1b|

|bT C−1b|
≤

κ‖2b+e‖2‖e‖2

‖b‖2
2

≤ 3κ‖e‖2
‖b‖2

≤ 3κδ.

3.1 Forward Regression
We now use the perturbation results above to give an anal-

ysis for the commonly used Forward Regression algorithm
(also called Forward Selection). Forward Regression is fre-
quently used in the social sciences; hence, proving guaran-
tees for its performance is important. If the covariance terms
are sufficiently small, then Forward Regression yields good
approximation guarantees for both Err(Z, S) and R2

Z,S .

Definition 3.4 (Forward Regression Heurestic).
Select a set S of size k iteratively as follows: (1) Initialize
S0 = ∅. (2) In each step i+1, select a variable Xj minimiz-
ing Err(Z, Si ∪ {Xj}). (3) Output Sk.

We first prove a bound on the approximation of R2
Z,S , and

then derive a theorem about the approximation of Err(Z, S).

Theorem 3.5. If Cov[Xi, Xj ] ≤ δ < 1
4k

for all i, j, the
Forward Regression heurestic reduces the error by at least
R2

Z,S ≥ (1− 4δk) ·R2
Z,S∗ , where S∗ is the optimum solution.

Proof. We assume without loss of generality that b1 ≥
b2 ≥ . . . ≥ bn. Let S = {Y1, . . . , Yk} be the variables chosen
by the Forward Regression heuristic. We will show that
R2

Z,S ≥ (1 − 8
3
δk)

Pk

i=1 b2
i . Using Corollary 3.2, applied

to S∗, and combining it with the optimality of
Pk

i=1 b2
i for

the identity matrix, this implies that R2
Z,S ≥ (1 − 8

3
δk)(1 −

4
3
δk)R2

Z,S∗ ≥ (1 − 4δk)R2
Z,S∗ , and hence the theorem.



We prove the inequality by induction over the k itera-
tions of the greedy algorithm. Clearly, the first variable
chosen by Forward Regression is X1, so the base case holds.
Assume that R2

Z,Sj
≥ (1− 8

3
δj)

Pj

i=1 b2
i after iteration j. Be-

cause the variance of Z is normalized to 1, and by optimal-
ity of the choice made by Forward Regression, we know that
R2

Z,Sj+1
= R2

Z,Sj
+R2

Z,Res(Yj+1,Sj) ≥ R2
Z,Sj

+R2
Z,Res(Xj+1,Sj).

Then, by using the induction hypothesis, and the fact that
Var[Res(Xj+1, Sj)] ≤ 1, we bound R2

Z,Sj
+R2

Z,Res(Xj+1,Sj) ≥
(1 − 8

3
δj)

Pj

i=1 b2
i + R2

Z,Res(Xj+1,Sj) ≥ (1 − 8
3
δj)

Pj

i=1 b2
i +

Cov[Z, Res(Xj+1, Sj)]
2.

Let b′ = [cj+1,i]i∈Sj be the vector of covariances between
Xj+1 and the variables Xi for i ∈ Sj , and CSj the sub-
matrix of the covariance matrix induced by the elements
of Sj . Let a = C−1

Sj
b′ be the vector of optimal regression

coefficients in Xj+1 =
Pj

i=1 aiYi + Res(Xj+1, Sj). In or-
der to show that the ai must be small, we use another ma-
trix perturbation theorem, Theorem III.2.11 from [28]. Let
E = CSj − I. Because each entry of E is at most δ < 1

4j
,

the theorem, applied to the identity matrix, implies that
‖a−b′‖∞
‖b′‖∞

= ‖(I+E)−1b′−I−1b′‖∞
‖I−1b′‖∞

≤ ‖E‖∞
1−‖E‖∞

≤ jδ

1−jδ
≤ 1

3
.

By the triangle inequality, ‖a‖∞ ≤ 4
3
‖b′‖∞ ≤ 4

3
δ. This

implies |ai| ≤ 4
3
δ, for all i. Expanding Cov[Z, Res(Xj+1, Sj)]

2,

using the fact that
Pj

i=1 Cov[Z, Yi] ≤
Pj

i=1 Cov[Z, Xi], and
substituting the bound on |ai|, we obtain that

Cov[Z, Res(Xj+1, Sj)]
2

= (Cov[Z, Xj+1] −
Pj

i=1 aiCov[Z, Yi])
2

≥ Cov[Z, Xj+1]
2 − 2Cov[Z, Xj+1]

Pj

i=1 |ai||Cov[Z, Yi]|
≥ b2

j+1 − 8
3
δ · bj+1

Pj

i=1 |bi|.
Using the sorting of the Xi, we have that bj+1 ≤ bi for

all i ≤ j, so the above can be further bounded as b2
j+1 −

8
3
δ

Pj

i=1 b2
i . Finally, we can substitute this bound back into

our lower bound for R2
Z,Sj+1

, obtaining that

R2
Z,Sj+1

≥ (1 − 8
3
δj)

Pj

i=1 b2
i + b2

j+1 − 8
3
δ

Pj

i=1 b2
i

≥ (1 − 8
3
δ(j + 1))

Pj+1
i=1 b2

i .

This completes the inductive proof, and hence the proof
of the theorem.

Theorem 3.5 is one of the key ingredients in the proof of
the following theorem about the approximation guarantee of
Forward Regression with respect to the mean squared error
Err(Z, S).

Theorem 3.6. Assume that Cov[Xi, Xj ] ≤ δ < 1
6k

for all
i, j. Let S be the set selected by Forward Regression, and S∗

the optimum solution. Then, Err(Z, S) ≤ (1 + 16(k + 1)2δ) ·
Err(Z, S∗).

We begin with two useful lemmas. The first (whose proof
is similar to that of Theorem 3.5, and deferred to the full
version due to space constraints) shows that if there is a
variable with large covariance with Z that is not included in
the optimum solution, then the variance of Z itself cannot
be too large (or the error of the optimum solution is still
quite large).

Lemma 3.7. Suppose that X1 /∈ S∗. If δ ≤ 1
4k

, then
Var[Z] ≤ (4k + 1) · Err(Z, S∗).

We can use this lemma to derive a corollary showing that
at the time the Forward Regression heuristic picks a “wrong”
variable for the first time, its solution cannot be too far from
the overall optimum.

Corollary 3.8. Let Si be the set chosen by Forward Re-
gression after iteration i, and t be the largest iteration num-
ber such that St ⊆ S∗. If δ ≤ 1

6k
, then Err(Z, St) ≤

(4k + 1)Err(Z, S∗).

Proof. Consider replacing Z with Z′ = Res(Z,St)√
Var[Res(Z,St)]

,

and each Xi /∈ St with X ′
i = Res(Xi,St)√

Var[Res(Xi,St)]
. That is, the

component correlated with St is removed from all variables,
and the variables are then renormalized to have variance 1.
Now, consider finding the optimal subset of size k−t for this
new problem. We will show that Cov[X ′

i, X
′
j ] ≤ 3

2
δ ≤ 1

4k
.

By definition of Forward Regression, the variable picked in
iteration t + 1 maximizes Cov[Z′, X ′

i], and by choice of t,
that variable is not in S∗. But S∗ \ St must be an optimal
solution for the new problem, so we can apply Lemma 3.7
directly to the new problem, and obtain the desired bound.

For any variable Xi /∈ St, Corollary 3.2 and the fact that
Var[Xi] = 1 imply that Var[Res(Xi, St)] = 1 − R2

Xi,St
≥

1 − (1 + 4
3
tδ) · δ2t ≥ 1 − 1

3
δ.

For any pair of variables Xi, Xj /∈ St, using the definition
of residuals, it is easy to prove Cov[Res(Xi, St), Res(Xj , St)] =
Cov[Xi, Xj ] − Cov[Xi, Xj − Res(Xj , St)] = Cov[Xi, Xj ] −
Cov[Xi − Res(Xi, St), Xj − Res(Xj , St)].

Using the Cauchy Schwarz Inequality and Corollary 3.2,
we can bound the second term as |Cov[Xi−Res(Xi, St), Xj−
Res(Xj , St)]| ≤

q

R2
Xi,St

R2
Xj ,St

≤ (1 + 4
3
tδ)δ2t ≤ 1

3
δ.

Thus, Cov[Res(Xi, St), Res(Xj , St)] ≤ 4
3
δ, and after nor-

malizing the variances to 1 again, the new covariances are
at most Cov[X ′

i, X
′
j ] ≤ ( 4

3
δ)/(1 − 1

3
δ) ≤ 3

2
δ.

Using Theorem 3.5 and Corollary 3.8, we can now com-
plete the proof of Theorem 3.6.

Proof of Theorem 3.6. We analyze Forward Regression
in two stages. Let t be the latest iteration such that St ⊆ S∗.
Define Z′ and X ′

i as in the proof of Corollary 3.8. Consider
the remaining k−t iterations of Forward Regression with Z′

and X ′
i. Because S∗ \St is the optimal solution for this new

problem, Theorem 3.5, applied to the solution S \ St found
by Forward Regression, implies (using Var[Z′] = 1) that

Var[Res(Z′, S \ St)] ≤ Var[Z′] − (1 − 4δk)R2
Z′,S∗\St

≤ Var[Res(Z′, S∗ \ St)] + 4δk.

The identities Res(Z, S) = Res(Z′, S \St) ·
p

Var[Res(Z, St)]

and Res(Z, S∗) = Res(Z′, S∗ \ St) ·
p

Var[Res(Z, St)] both
follow from the definition of Z′, and using Corollary 3.8
imply that

Var[Res(Z, S)] ≤ Var[Res(Z, S∗)] + 4δkVar[Res(Z, St)]
≤ Var[Res(Z, S∗)] + 4δk(4k + 1)Err(Z, S∗)
≤ (1 + 16(k + 1)2δ)Err(Z, S∗),

completing the proof of the theorem.

Theorem 3.6 proves similar guarantees about Forward Re-
gression as [14, 35, 32] proved about different greedy heuris-
tics. Using our notation, the result of [14] for a two-stage



greedy algorithm of Matching Pursuit and Orthogonal Match-
ing Pursuit states that if the maximum covariance between
pairs of observation variables is δ < 1

32k
, the two-stage algo-

rithm finds a k-subset S with mean-square prediction error
Err(Z, S) ≤ (1 + 2064k2δ) ·Err(Z, S∗). Tropp et al. [35] im-

proved this bound to Err(Z, S) ≤ (1+ 2k2δ
(1−2kδ)2

) ·Err(Z, S∗),

whenever δ < 1
2k

. Tropp [32] subsequently showed a similar
guarantee for the Orthogonal Matching Pursuit algorithm
without the other stage. His results prove that the mean-
square prediction error is Err(Z, S) ≤ (1 + 6k) · Err(Z, S∗),
whenever δ < 1

3k
.

4. LOW BANDWIDTH GRAPHS
In this section, we study the special case where G̃(C) has

constant bandwidth β. That is, the variables can be or-
dered such that Cov[Xi, Xj ] = 0 whenever |j − i| > β.
Under the assumption that C has polynomially bounded
condition number, we give an FPTAS for maximizing the
error reduction, R2

Z,S . Combining it with our matrix per-
turbation bound from Lemma 3.1 also yields approximation
algorithms for the case where G̃(C) is sufficiently close to
having constant bandwidth. The low-bandwidth case is im-
portant for its application in two practical cases. It can
model random variables of a time series where the temporal
correlations between variables are significant only within a
small time interval. Additionally, it can model spatial cor-
relations between sensor variables placed on a line.

Using an algorithm of Saxe [27], an ordering with band-
width β can be found in polynomial time O(nβ) if it exists.
We assume from now on that the variables are ordered ac-
cordingly.

Theorem 4.1. If G̃(C) has bounded bandwidth β, then
there is an FPTAS for R2

Z,S. For any ǫ > 0, we can obtain a

solution S in time O(n(k/ǫ)β2

β2β2

κ2β2

(1+2 log(1/ρmin))β),
guaranteeing that R2

Z,S ≥ (1 − ǫ) · R2
Z,S∗ , where S∗ is the

optimum solution. Here, ρmin is the smallest non-zero cor-
relation value of any Xi with Z.

Proof. Given a desired approximation guarantee (1 − ǫ),
we first define δ := ǫ

6ek(β−1)2κ2 . Given a (for now) arbitrary

matrix P = (pi,j) ∈ R
(β−1)×(β−1) and vector q ∈ R

β−1,
we define f(a, s, P,q) to be the maximum R2 value for pre-
dicting Z using a size-s subset of variables Y1, . . . , Yn−a+1,
which are defined in terms of their covariance matrix C′

(with entries c′i,j) and covariance vector b′ (with entries b′i)
with Z as follows: For 1 ≤ i, j ≤ β − 1, the covariances
between Yi and Yj are given by pi,j , and the covariances
between Yi and Z are given by qi. For all other i, j, we
have c′i,j = ca+i−1,a+j−1, and b′i = ba+i−1. Then, if r is the
smallest index of a variable Y1, . . . , Yn−a+1 not selected in
the optimal s-subset, we have the recurrence:

f(a, s, P,q) =

8

>

>

>

<

>

>

>

:

0, if a > n or if s = 0;

R2(Z, Y1, . . . , Yn−a+1), if n − a + 1 ≤ s;

maxr≤n−a+1 R2(Z, Y1, ...Yr−1)

+f(r + a, s − (r − 1), P (r),q(r)) otherwise;

where the matrix P (r) has as its (i, j)th entry a value equal

to Cov[Res(Yr+i, {Y1, . . . , Yr−1}), Yr+j ], and the vector q(r)

has as its ith component a value equal to Cov[Z, Res(Yr+i,)

{Y1, . . . , Yr−1}]. The last equation in the recurrence follows
from Lemma 2.4 and the fact that the problem instance has
bandwidth β.

The optimal error reduction in Z using k variables selected
from X1, X2, . . . , Xn is then f(1, k, P0,q0), where P0 is the
leading (β − 1)× (β − 1) submatrix of C, and q0 the vector
of covariances of the first β − 1 variables Xi with Z.

Since we cannot store the optimum f values for all param-
eter settings (from a continuous space), we discretize the
allowable entries of P and q to create approximations P ′

and q′, and use perturbation bounds to analyze the amount
of error introduced. Each entry of the (β − 1) × (β − 1)
leading submatrix of C′ is rounded to the nearest multiple
of δ. Thus, for each entry, there are at most 1

δ
possible

values. By Lemma 4.3 (proved below), the condition num-
ber of C′ in each iteration is at most that of C, and an
extension of Lemma 3.1 thus implies a relative error of at
most 4

3
(β − 1)κ2δ due to rounding the entries of P in each

iteration.
Similarly, we round each of the first β − 1 entries of b′

as follows: Without loss of generality, the Yi variables have
been normalized to have a variance of 1. Let ρmin be the
smallest non-zero correlation value of any of the variables Yi

with Z. For each of the entries qi, we distinguish whether
they fall into the interval [0, ρmin], in which case we round qi

to the closest multiple of δρmin, or into the range [ρmin, 1],
in which case we round to the nearest value (1 + δ)iρmin

for i = 0, . . . , log1+δ
1

ρmin
. So the total number of possible

rounded values for each entry is 1
δ

+ log1+δ
1

ρmin
≤ 1

δ
· (1 +

2 log(1/ρmin)).
If we round just one entry qi, then the resulting error

vector e due to rounding in both cases satisfies ‖e‖2
‖q‖2

≤ δ,

i.e., it has small relative norm. Then, using Lemma 3.3,
the relative perturbation error in f due to rounding a sin-
gle qi parameter is at most 3κδ. Thus, the relative error
due to discretizing all the entries of q in each iteration
is at most 3(β − 1)κδ. Combining the relative errors in-
troduced due to all of the rounding, we obtain the bound

| f(a,s,P ′,q′)−f(a,s,P,q)
f(a,s,P,q)

| ≤ 3(β − 1)2κ2δ. Since there are at

most k iterations, the total relative error in the worst case
is (1 + 3(β − 1)2κ2δ)k − 1 ≤ 3ek(β − 1)2κ2δ = ǫ/2, because
3(β−1)2κ2δ ≤ 1/k. This implies an approximation guaran-
tee of 1 − ǫ, as desired.

Since 1/δ = O((kβ2κ2)/ǫ), the table for the dynamic pro-
gram has size O(nk · 1

δ(β−1)2
· ( 1

δ
· (1 + 2 log(1/ρmin)))β−1)

= O(n(k/ǫ)β2

β2β2

κ2β2

(1 + 2 log(1/ρmin))β), and the total
time to fill it is thus also polynomial in n, k, and 1/ǫ for any
fixed β. Notice that log(1/ρmin) depends on the input only
polynomially, not pseudo-polynomially. Thus, we obtain an
FPTAS whenever κ = O(poly(n)).

Combining the theorem with our matrix perturbation bound
from Lemma 3.1, we obtain an approximation algorithm for
the subset selection problem when the covariance matrix is
sufficiently close to having low bandwidth and is well con-
ditioned.

Corollary 4.2. If the covariance graph G̃δ(C) has band-
width β, and δ ≤ 1

4κk
, then for any ǫ > 0, there is a

polynomial-time approximation algorithm for R2
Z,S, guaran-

teeing that R2
Z,S ≥ (1 − 8

3
κ(C)2kδ)(1 − ǫ) · R2

Z,S∗ , where S∗

is the optimum solution.



Lemma 4.3. Let κ(C) be the condition number of the co-
variance matrix C of n random variables X1, X2, . . . , Xn,
and κ(C′) be the condition number for the (n−1)×(n−1) co-
variance matrix C′ of the n−1 random variables Res(X2, X1),
Res(X3, X1), . . . , Res(Xn, X1). Then κ(C) ≥ κ(C′).

Proof. Let λi resp. λ′
i denote the eigenvalues of C resp. C′.

By definition of the induced matrix norm for a symmetric

matrix, κ(C) = λ1
λn

, and κ(C′) =
λ′
1

λ′
n−1

.

We first prove that λ1 ≥ λ′
1. Consider the (n − 1) ×

(n − 1) covariance matrix C′′ for X2, X3, . . . , Xn. Since
C′′ is formed by removing the first row and column of C,

λ1 ≥ λ′′
1 . Now c′i,i = Var[Res(Xi+1, X1)] = ci+1,i+1 − c2i+1,1

c1,1
,

and c′i,j = Cov[Res(Xi+1, X1), Res(Xj+1, X1)] = ci+1,j+1

− ci+1,1cj+1,1

c1,1
. Hence we obtain that C′′ = C′ + D, where

we define D = 1
c1,1

[c′′2,1, c
′′
3,1, . . . , c

′′
n,1] · [c′′2,1, c

′′
3,1, . . . , c

′′
n,1]

T .

Clearly, D is positive semidefinite. Also, C′ is a valid co-
variance matrix and hence is positive semidefinite. There-
fore, by using Weyl’s Theorem [16], we get λ′′

1 ≥ λ′
1, and

hence λ1 ≥ λ′
1.

To prove λn ≤ λ′
n−1, let e′ = [e′1, . . . , e

′
n−1]

T be the eigen-
vector of C′ corresponding to λ′

n−1, and consider the n-
dimensional vector e = [− 1

c1,1

Pn

i=2 e′i−1c1,i, e
′
1, e

′
2, . . . , e

′
n−1]

T .

Then, we have that C·e = [0, λ′
n−1e

′
1, λ

′
n−1e

′
2, . . . , λ

′
n−1e

′
n−1]

T

= λ′
n−1[0, e′1, e

′
2, ...e

′
n−1]

T . Thus, ‖C · e‖2 ≤ λ′
n−1‖e‖2, which

implies that λn ≤ λ′
n. Hence κ(C) ≥ κ(C′).

5. TREE COVARIANCE GRAPHS
In this section, we consider the case that G(C,b) is a tree,

and prove the following theorem.

Theorem 5.1. If the covariance graph G(C,b) is a tree
with maximum degree d, then the optimum k-subset for re-
gression can be found in time O(k2nd) .

Analogous to Corollary 4.2, this theorem can be com-
bined with Lemma 3.1 to give an approximation algorithm
if Gδ(C,b) forms a tree, i.e., the covariance matrix defines
“nearly a tree” (assuming C is well-conditioned). Notice
that a tree covariance matrix is a significant extension of
the case when Gǫ(C,b) forms a star, the only case for which
provable guarantees were known in the past.

Proof. For ease of notation, we write X0 := Z. We con-
sider the tree as rooted at X0. Let Si,k be the k-subset
minimizing Err(Xi, S) among subsets using only variables
in the subtree rooted at Xi, and P (Xi, k) = Err(Xi, Si,k)
the error it achieves. For convenience, set P (Xi,−1) = ∞.

Let the children of Xi be Xi
1, X

i
2, . . . X

i
p, for p ≤ d. W.l.o.g.,

the optimum solution includes Xi
1, . . . X

i
m. Then, it cannot

include any nodes Xj in the subtrees rooted at Xi
m+1, . . . , X

i
p.

For an easy calculation of matrix inverses shows that if the
node Xj is not connected to Xi with a path in the subgraph
induced by S, then Err(Xi, S) = Err(Xi, S ∪ {Xj}). Let
Rj for j = 1, . . . , m denote the sets of nodes in the subtree
rooted at Xi

j that are part of Si,k, except Xi
j itself. We will

show that if Xi
j = Xi′ , and Rj has size kj , then Rj = Si′,kj

.
In words, the variables below Xi′ that are best for predicting
Xi′ are also best for predicting Xi.

By applying Lemma 2.3, and then using the fact that Z
is not linearly correlated with any Xi′ ∈ Rj , and any Xi′ in

Rj is not correlated with any variables except possibly Xi
j

and others in Rj , we obtain that

Res(Xi, Si,k) = Res(Xi,
Sm

j=1(Rj ∪ {Xi
j}))

= Res(Res(Xi,
S

j Rj), {Res(Xi
1,

S

j Rj),

. . . , Res(Xi
m,

S

j Rj)})
= Res(Xi, {Res(Xi

1, R1), . . . , Res(Xi
m, Rm)}).

Using the fact that Cov[Res(Xi
j , Rj), Res(Xi

j′ , Rj′)] = 0

for j 6= j′, and applying Lemma 2.4, we have that P (Xi, k) =

Var[Res(Xi, Si,k)] = Var[Xi] −
Pm

j=1

Cov[Xi,Res(Xi
j ,Rj)]2

Var[Res(Xi
j
,Rj)]

=

Var[Xi] −
Pm

j=1

Cov[Xi,Xi
j ]2

Var[Res(Xi
j
,Rj)]

.

Using this identity, and the observation about connectiv-
ity, we derive a recurrence relation for the optimum solution:

P (Xi, k) = Var[Xi] − max
k1,...kp:k1+...kp=k

“

p
X

j=1

Cov[Xi, X
i
j ]

2

P (Xi
j , ki)

”

.

We see that P (Xi, k) is thus monotonically increasing in
each of the P (Xi

j , ki), and in particular, optimal solutions

for Xi must contain optimal solutions for the children Xi
j .

This enables a bottom-up dynamic programming solution.
Because the algorithm thus needs to compute a corre-

sponding value P (Xi, k, j) for each triple, and each such
computation takes time O(k), the overall running time is
O(k2nd).

Dynamic programs for tree graphs can frequently be ex-
tended to graphs of bounded treewidth, and one would hope
for a straightforward extension of the above algorithm. How-
ever, obtaining such an extension appears difficult. The rea-
son is that if a small subset T of nodes separates the vertices
into two or more partitions, and some of the nodes in T are
selected, they introduce conditional dependencies between
otherwise uncorrelated variables. Hence, if the subset selec-
tion problem can be solved for bounded treewidth graphs,
the techniques would likely have to be significantly different.

6. COVARIANCE GRAPHS WITH LARGE
INDEPENDENT SETS

Another special case amenable to polynomial time algo-
rithms is when the covariance graph G(C,b) has a known
large independent set I, of size |I| = n − ν, for some con-
stant ν. This case is motivated by scenarios in which the
algorithm has access to n− ν (known) independent samples
X1, . . . , Xp, as well as ν “aggregate statistics” Y1, . . . , Yν of
those variables, which may be correlated arbitrarily with the
independent variables and each other. The algorithm can
choose a mix of aggregate statistics Yj and Xi variables. We
present a polynomial-time algorithm for this special case.

Theorem 6.1. If G(C,b) contains a (known) indepen-

dent set I of size n−ν, then there exists an O(2νn4(ν2+ν+1))
time algorithm for the subset selection problem.

As before, this result can be combined with the matrix
perturbation bound from Lemma 3.1 to yield approximation
bounds similar to those of Corollary 4.2 when Gǫ(C,b) has
a large independent set (assuming C is well-conditioned).



Proof. Assume that X1, . . . , Xn−ν are pairwise uncorre-
lated (i.e., form the independent set), while Xn−ν+1, . . . , Xn

may have arbitrary correlations with each other or with
X1, . . . , Xn−ν . Our algorithm will perform exhaustive search
over all at most 2ν subsets T ⊆ {Xn−ν+1, . . . , Xn} of size
at most t = |T | ≤ min(k, ν). For each such set T , it deter-
mines the optimum complementary set S ⊆ {X1, . . . , Xn−ν}
of size |S| = k − t in polynomial time, as described below.
It then simply outputs the best set S ∪ T as the solution.

Given a choice of T , the objective for the remaining set S
of size k−t is to maximize f(S) := R2

Z,S∪T . We first rewrite

R2
Z,S∪T as follows: R2

Z,S∪T = R2
Z,S + R2

Z,{Res(Xj ,S)|j∈T} =
P

r∈S b2
i + R2

Z,{Xj−
P

r∈S cj,rXr|j∈T}.

By Section 2, R2
Z,{Xj−

P

r∈S cj,rXr|j∈T} = b′C′−1
b′, where

b′ is the vector of covariances between Res(Xj , S) and Z
for Xj ∈ T , and C′ the matrix of covariances between the
Res(Xj , S) for Xj ∈ T . Thus, their respective entries are
b′j = bj −

P

r∈S cj,rbr, and c′i,j = ci,j −
P

r∈S ci,rcj,r.
Because C′ is a covariance matrix, and thus positive semidef-

inite, the function b′C′−1
b′ is convex in each entry of b′ and

C′ (see, e.g., Section 3.1.7 of [2]). The equivalent formula-
tion above allows us to reduce the problem to the Shaped
Partition Problem [17, 25], defined as follows.

A p-shape of n is a tuple λ = (λ1, λ2, . . . , λp) of non-
negative integers such that

Pp

i=1 λi = n. Given a set Λ of
p-shapes, a p-partition π of {1, . . . , n} into p disjoint sets
π1, . . . , πp is a Λ-partition iff there exists a λ ∈ Λ with
|πi| = λi for all i. Given a set of n vectors A1,A2, . . . ,An

in d dimensions and a p-partition π of {1, . . . , n}, we let
Bπ,j =

P

i∈πj
Ai be the sums of vectors in the jth par-

tition. Given a non-empty set Λ of shapes and a convex
function g : (Rd)p → R defined on p-tuples of d-dimensional
vectors, the shaped partition problem consists in finding a
Λ-partition π maximizing g(Bπ,1,Bπ,2, . . . ,Bπ,p).

Theorem 6.2 (Theorem 4.2 from [17]). If the set Λ
allows membership queries in time O(1), the shaped partition

problem is solvable in time O(ndp2

).

We reduce our problem to the shaped partition problem
with d = t2 + t+1 and p = 2 as follows: For each r ≤ n− ν,
we define a (t2 + t + 1)-dimensional vector

Ar =
“

[
b′j

k−t
− cj,rbr]j∈T , [

ci,j

k−t
− ci,rcj,r]i,j∈T , b2

r

”

.

Notice that the Ar are explicitly defined in such a way
that if S is a set of k − t indices r ≤ n − ν, then

X

r∈S

Ar = ([b′j−
X

r∈S

cj,rbr]j∈T , [ci,j−
X

r∈S

ci,rcj,r]i,j∈T ,
X

r∈S

b2
r),

i.e., the entries are the entries of b′ and C′. Hence, we
can express f(S) as a function of two vectors g(x,x′) =

xt2+t+1 + b(x)C(x)−1
b(x), where b(x) is the vector of coor-

dinates 1, . . . , t of x, and C(x) the t× t matrix whose entries
are the coordinates t+1, . . . , t+ t2 of x. (Notice that g does
not depend on x′.) Defining Λ as the set of all 2-partitions
π of {1, . . . , n− ν} with |π1| = k − t, the sets π1 correspond
exactly to the desired sets S, and f(S) = g(x,x′).

It follows that g is convex in all its variables, and we
can use the algorithm from Theorem 6.2 to determine the

optimum set S in time O(n4(t2+t+1)).

7. EXPONENTIAL DECAY
In this section, we consider another important class of

covariance structures: the case where the variables Xi are
associated with points y1 ≤ y2 ≤ . . . ≤ yn on a line, and the
covariances are Cov[Xi, Xj ] = a|yi−yj | for some constant
a ∈ (0, 1). This special case arises naturally in temporal
processes of the following form: X1 = Y1, Xi = γiXi−1 +Yi,
where the Yi are independent random variables such that
each Xi has variance 1. Such processes arise naturally when
a constant fraction of a population is depleted over a time
period, and then refilled randomly. Since Cov[Xi, Xj ] =
Qj

r=i+1 γr for i < j, this directly leads to an embedding of

the Xi into the line, by setting y1 = 0 and yi =
Pi

j=2 loga γj

for i ≥ 2, and an arbitrary constant a ∈ (0, 1). This case can
also be considered a first step toward an exploration of co-
variances defined by monotone decreasing functions of more
general classes of metrics, a regime which is very relevant
for sensor networks.

Our algorithm is based on a characterization of the inverse
of such exponential-decay covariance matrices, shown in the
following lemma (the proof is omitted due to lack of space).

Lemma 7.1. Let C be a k × k covariance matrix whose
(i, j) entry is the covariance of Xpi and Xpj , i.e., a

|ypi
−ypj

|

for all i, j. We write Di = |ypi+1 − ypi | for 1 ≤ i ≤ k − 1,

and Di = ∞ for i = 0 or i = k. With c−1
ij denoting the

entries of C−1, we have

c−1
ij =

8

>

<

>

:

0, if |i − j| > 1
−1 + 1

1−a
2Di−1

+ 1

1−a2Di
, if j = i

− aDi

1−a2Di
, if j = i + 1.

Using the above lemma, the reduction in error due to
sampling a set S = {Xp1 , . . . , Xpk

} of k random variables is

bS
T C−1

S bS =
Pk

i=1

Pk

j=1 bpibpj c−1
i,j

=
Pk

i=1 b2
pi

(1 + a
2Di−1

1−a
2Di−1

+ a2Di

1−a2Di
)−

2
Pk−1

i=1 bpibpi+1
aDi

1−a2Di

=
Pk

i=1 b2
pi

+
Pk

i=2 b2
pi

a
2Di−1

1−a
2Di−1

+
Pk−1

i=1 b2
pi

a2Di

1−a2Di
− 2

Pk−1
i=1 bpibpi+1

aDi

1−a2Di

=
Pk

i=1 b2
pi

+
Pk−1

i=1 (bpi − bpi+1)
2 a2Di

1−a2Di
−

2
Pk−1

i=1 bpibpi+1
aDi

1+aDi
.

The above equation can be used to derive a dynamic pro-
gram for finding the best set S. Let E(v, j) denote the
maximum error reduction possible by choosing v variables,
including necessarily Xj , from among variables Xj , . . . , Xn.
Then we obtain the recurrence relation (with E(0, j) = 0):

E(v + 1, j) = maxj+1≤i≤n(E(v, i) + b2
j + (bj − bi)

2 a
2|yi−yj |

1−a
2|yi−yj |

−2bjbi
a
|yi−yj |

1+a
|yi−yj | ).

Thus, using dynamic programming, we can compute all
the E(v, j) values in time O(n2k). The optimal error reduc-
tion using k variables is then R2

Z,S∗ = max1≤j≤n E(k, j),
and the actual solution can be obtained easily.



8. ABSENCE OF SUPPRESSORS
In this section, we derive another condition on covariance

matrices that permits a good approximation for maximiz-
ing the error reduction R2

Z,S . In the statistics community,
so-called suppressor variables [5, 36] have frequently been
considered as “unfavorable attributes of regression models”
[38]. Intuitively, a variable Xj is a suppressor variable if it
“suppresses” the correlation between some other Xi and the
predictor variable Z, in the sense that Xi appears not (or
only slightly) correlated with Z, but is much more correlated
with Z once Xj has been sampled. For instance, if Xi and
Z are independent, and Xj = Xi + Z, then Xj would be a
suppressor variable. Formally, Xj is a suppressor variable if
|Corr(Z, Xi/Xj)| > |ρ(Z, Xi)| for some variable Xi.

We show that a somewhat stricter version of the absence
of suppressor variables leads to a performance guarantee for
Forward Regression. Given a set S of random variables, we
say that Xj is a suppressor conditioned on S iff

|Corr(Z, Res(Xi, S)/Res(Xj , S))| > |ρ(Z, Res(Xi, S))|.
Thus, the traditional notion of a suppressor variable is a
suppressor conditioned on the empty set.

We then prove that in the absence of (conditional) sup-
pressor variables, the greedy Forward Regression heuristic
gives a (1 − 1

e
) approximation algorithm. The idea of the

proof is to show that the absence of suppressor variables
implies that the objective function R2

Z,S is submodular in
S. Then, by a well-known result of Nemhauser, Wolsey, and
Fisher [6, 24], the greedy algorithm for maximization is a
(1− 1

e
) approximation. We note here that an alternate NP-

hardness proof (omitted here due to lack of space) shows
that the subset selection problem remains NP-hard even in
the absence of suppressors.

Theorem 8.1. If there are no suppressor variables con-
ditioned on any set S, then the Forward Regression heuris-
tic is a (1 − 1

e
) approximation for the problem of maxi-

mizing the error reduction, i.e., its selected set S satisfies
R2

Z,S ≥ (1 − 1
e
)R2

Z,S∗ , where S∗ is the optimal k-subset.

Proof. Recall that a function f from sets to real values
is called submodular iff it satisfies the “diminishing returns”
property f(S+x)−f(S) ≥ f(T +x)−f(T ) whenever S ⊆ T .
It is well-known [6, 24] that if a function is monotone, sub-
modular, and non-negative, then the natural greedy algo-
rithm for maximization over subsets of size k is a (1 − 1/e)
approximation. We will apply this result to the function
R2

Z,S . Obviously, R2
Z,S is monotone and non-negative in S,

so it remains to show that it is submodular.
Consider a set S = {X1, . . . , Xn}, and T = S ∪ S′, with

S′ = {Y1, . . . , Ym}, where m ≥ 1. Let X /∈ S ∪ S′ be
another variable. We will show that R2

Z,S∪{X} − R2
Z,S ≥

R2
Z,S∪S′∪{X} − R2

Z,S∪S′ .

We let W = Res(Z, S ∪ S′ ∪ {X}), Z′ = Z − W , and
Q = Res(X, S ∪ S′), X ′ = X − Q. Thus, Z′ = γX +
P

i αiXi +
P

j βjYj , for some γ, αi, βj and X ′ =
P

i ξiXi +
P

j ηjYj , for some ξi, ηj . Substituting X = X ′ + Q into the

expression for Z = Z′ + W , and using that Cov[W, Q] = 0,
we get Z =

P

i(γξi + αi)Xi +
P

j(γηj + βj)Yj + γQ + W ,

so Res(Z, S ∪ S′) = γQ + W .
Substituting the definition of squared multiple correlation,

R2
Z,S∪S′∪{X} −R2

Z,S∪S′ = Var[Z′]−(Var[Z]−γ2Var[Q]−Var[W ])
Var[Z]

=

γ2Var[Q].

Also, the definition of semi-partial correlation and of Q

gives that Corr(Z, Res(X, S∪S′)) = Cov[Z,Res(X,S∪S′)]√
Var[Z]

√
Var[Res(X,S∪S′Y )]

= Cov[Z′+W,Q]√
Var[Q]

= Cov[Z′,Q]√
Var[Q]

= γ
p

Var[Q].

Hence, R2
Z,S∪S′∪{X}−R2

Z,S∪S′ = Corr(Z, Res(X, S∪S′))2.

An identical proof gives R2
Z,S∪{X}−R2

Z,S = Corr(Z, Res(X, S))2.
But by the original assumption on the absence of conditional
suppressors, we have that for any Yi ∈ S′, |Corr(Z, Res(X, S∪
{Yi}))| = |Corr(Z, Res(X, S)/Res(Yi, S))| ≤ |ρ(Z, Res(X, S))|,
from which it can be seen by a simple inductive proof that
|Corr(Z, Res(X, S∪S′))| ≤ |ρ(Z, Res(X, S))|. Taking squares
now completes the proof.

9. CONCLUSIONS AND OPEN PROBLEMS
We investigated the problem of selecting a subset S of ob-

servation variables for linear regression to maximize R2
Z,S .

We gave exact algorithms for several restricted classes of co-
variance structures including the case where G(C,b) forms
a tree, or has a large independent set, and an FPTAS when
G̃(C) forms a constant-bandwidth graph. Using our pertur-
bation results, we could then extend these results for the
cases when the graphs violated these structures by edges
with small covariances. We also gave exact and approxi-
mation results for certain exponentially decaying covariance
matrices and for cases without suppressor variables.

Naturally, the most important direction for future work is
to obtain approximation guarantees for other, more general,
cases. While the hardness result mentioned in the text pre-
cludes any general approximation for minimizing the mean
square prediction error, no hardness result is known for the
problem of maximizing the error reduction. The difficulty
in either a hardness or general approximation result lies in
the highly non-linear behavior of the matrix inverse.

Barring a more general approximation or hardness result,
one direction for future work is to identify interesting and
practically relevant special cases for which tractable algo-
rithms can be obtained. One could hope that the results
from Section 5 would extend to bounded treewidth; how-
ever, such an extension appears not as natural as in many
other cases of dynamic programming algorithms for trees.

The results of Section 7 suggest extensions of our work in
at least two directions. The motivation from temporal pro-
cesses suggests considering a higher-order Markov process,
of the form Xi+1 =

Pi

j=i−p γi+1,jXj +Yi+1. The motivation
from sensor networks would aim at generalizing the types of
dependencies on the distance beyond exponential, and the
metric space beyond one-dimensional.

Beyond the prediction of a single variable Z, it would be of
interest to predict multiple variables Z1, . . . , Zr at once, with
an appropriately chosen aggregation measure of prediction
quality. We leave these questions as interesting directions
for future work.
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