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1. INTRODUCTION

Suppose you decide to sell an item — say, your car — using thensiog procedure.
People come to your garage one at a time, appraise your cannake bids to buy it
from you. Each person is allowed to submit only one bid, andrakeceiving an offer,
you must make an immediate decision whether to accept octrigje What is the best
strategy for deciding which bids to accept or reject? Thissgiwn has different answers
under different modeling assumptions. Do we assume thdtitteeconstitute a worst-case
sequence, a random sequence, or something else? If therbidsandom sequence, does
the seller have prior information about the bid values? é&aha correlation between the
ordering of the bids and their values? How do we model theds&gldstrategic behavior, if
at all?

At one extreme of the modeling spectrum is the traditiongraach in online algorithms
[Borodin and El-Yaniv 1998] of assumingveorst-case input. This view leads to a very
pessimistic bound: no online algorithm (randomized or heieistic) for selecting one
bid from a sequence of bids can achieve better than &1 /n) fraction of the optimum
revenué. At the other extreme is a sequence of bids independentlyiderdically dis-
tributed (i.i.d.) according to &nown distribution. In that case, the optimum strategy can
be computed in polynomial time using dynamic programming.

Since the first extreme leads to unnecessarily pessimistiods, and the second as-
sumes too much knowledge on the part of the seller, it is ahtarinvestigate models in
between the two extremes. Two natural candidate modelesttftemselves. (1) The bids
are i.i.d. from anunknown distribution. (2) An adversary gets to decide on the values o
the bids, but not on therder in which they are presented to the seller. The former model
is akin to approaches often taken in machine learning anthA&ct, it is subsumed by the
second model, since the sequence can be determined by d¢ksigpa multi-set of values
from the (unknown) distribution, and then permuting themdamly.

Returning to your goal of selling your car, we can now state fihoblem formally as
follows:

Given a sequence of numbers in random ord&rdesign an online algorithm
for picking one element of the sequence, to maximize the egpevalue of
the chosen element.

Stated this way, the problem is very similar to the fam8asretary Problem: designing
an algorithm for picking one element of a randomly orderegussce, to maximize the
probability of picking the maximum element of the entire sequence. In fact, although the
two problems have different objectives (optimizing the exted value of the chosen ele-
ment versus optimizing the probability of choosing the maxin element), it is clear that
a solution to the secretary problem immediately yields go@hm for choosing one bid
from a randomly-ordered bid sequence.

LIf the n bids are a worst-case sequence, then for soRie > n, the bid sequence could be
1,K,K?,K3,...,K™,1,1,...,1, where the value ofn is chosen to be the worst possible for the algo-
rithm under consideration. In this case, no algorithm (éf/&ns randomized) can achieve more than@fl1/n)
fraction of the optimum revenue: any algorithm is simply tde@ly to stop before or after the maximum element
is presented, since it has no way of knowing when the georaéjrimcreasing sequence of bids will end until it
is too late.

2i.e., a sequence sampled from any distribution invarianeunebrdering the: elements of the sequence
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Online Auctions and Generalized Secretary Problems . 3

The preceding example shows that secretary problems ante gemerally, optimal
stopping problems are closely related to online auctiomd can lead to surprisingly strong
guarantees on the expected value selected. The rest ofttbis aurveys a variety of recent
results and open questions in this area, which arise natdram thinking about general-
izations and variations of the single-item auction appiicapresented at the start of the
article.

(1) Many auction scenarios involve the sale of more than tam.iFor instance, the seller
could havek identical items to be sold in an online fashion to the bidders further
generalization, the bidders may require more than one oftémes. This scenario
naturally models auctions for ad impressions on a web sitlgrdiuman or machine
resources. It gives the auction the flavor of@miine Knapsack Problem.

(2) The interactions between the bidders’ desired itemc@isalso take on more complex
forms. Natural examples include airline travelers seekmgurchase seats on one
of multiple possible itineraries, or moviegoers seekingtochase tickets for one of
multiple movies or showings. As we describe in more detdiblwethese and several
other scenarios are naturally cast asatroid structure constraining the sets of bids
which can be jointly accepted.

(3) In auction scenarios, earlier revenue or sales are oftere valuable than later ones.
Given the time-dependent nature of the problem, it is nataratudy the generaliza-
tion to time-discounted revenue, and the impact it has oexpected value an online
auction can generate.

(4) It is well known that bidders might misrepresent theuretivaluation of an item (or
other parameters) if it allows them to purchase the item nobeeaply. Designing
truthful auctions, in which self-interested bidders have no incentive toii@n impor-
tant area of auction design. The question of incentive aligmt is equally valid and
important in the context of online auctions.

Beginning with the original secretary problem and a formatlioe of our general frame-
work, we explore each of the four generalizations discuskede. Most of the proofs will
be omitted or sketched, and can be found in the cited litezatu

2. THE SECRETARY PROBLEM

The problem of designing an online algorithm to optimize pinebability of selecting the
maximum element in a randomly-ordered sequence is traditipknown as thé&ecretary
Problem, due to the following motivating application. Imagine thyai manage a com-
pany, and you want to hire a secretary from a pooh@fpplicants. You are very keen on
hiring only the best and brightest. Unfortunately, you aatntell how good a secretary
is until you interview hini, and you must decide whether or not to make an offer at the
time of the interview. As your decision is irrevocable, yoil\wave to hire a secretary
before observing the quality of applicants that have not yet bemitewed. What sort of
guarantee can you give regarding the probability of hirimg best secretary?

For some intuition, let us consider the special case of justtapplicants. You can easily
guarantee that you hire the best secretary with probaHi}i8y simply hire a secretary at

3We use male pronouns throughout this paper for simplicity. Skueption on the genders of actual agents is
intended.
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random. Can you do better? In fact, you can. The idea is toviet® the secretaries in a
random order and use the quality of the first secretary tohgebar for the one you hire.
That is, if the three applicants are Alice, Bob, and Chatlesn

(1) Choose an applicant at random, say Alice, and interviemblut do not hire her. Let
her quality bev 4.

(2) Choose one of the remaining applicants, say Bob, at randad observe his quality
vg. If Bob is better than Alice, i.eqyp > v4, hire Bob. Otherwise, hire the third
applicant, Charles.

With probability 1, you happen to interview the second-best applicant firstytirch
case you definitely hire the best applicant. Additionallithvprobability ¢, you interview
the worst applicant first and the best applicant second, iictwbase you also hire the
best applicant. Thus, this strategy has probabgitgf hiring the best applicant! Lindley
[1961] and Dynkin [1963] proved that a generalization okthtrategy to a setting with
n applicants yields a probability approachifige ~ 0.37 of hiring the best secretary,
and that this is the best possible guararftéhe optimal strategy is appealingly simple:
interview the firstn ~ n/e applicants without making any hiring decisions, then hire t
next applicant whose quality exceeds the best of thesirsif you reach the end of the
sequence without hiring anyone, then hire the last appicamatter what.

Because the secretary algorithm selects the maximum etemenrandomly-ordered
sequence with probability at lealste, the same algorithm can also be used in a single-item
auction with randomly-ordered bids, to select a bid whoggeeted value is at leasye
times the maximum bid. This factdy e is optimal for both the original secretary problem
and the online single-item auction with randomly orderedsbalthough its optimality in
the latter case does not follow easily from its optimalitythie former case.

3. A UNIFIED FRAMEWORK

All of the problems we consider can be described in the fathgicommon framework that
extends the “online single-item auction” interpretatidriree secretary problem. A ground
setl/ of so-calledelements corresponds to the bidders, and a collection of sutBeis2!
(closed under containment) describes the sets of biddessenbids can be simultaneously
accepted. (These are also calfedsible sets.) For example, in the case of a single-item
auction,Z is the collection of sets with at most one element. In the o ad impression
auction,Z is the collection of all set§ whose total requested impressions sum up to at most
the total available impressions.

Each element € U/ has a non-negativealue v,.. We wish to design online algorithms
in which the structure dff andZ is known at the outset, while the elements and their values
are revealed one at a time in random order. As each elementsemted, the algorithm
must decide whether to select or reject it, subject to theviehg constraints:

(1) The decision to select or reject is irreversible.

(2) The decision must be made before the next element in theesee is presented.
(3) The set of selected elements must belong &b all times.

4As is the case with most simple and beautiful mathematical statisitais problem has been stated and solved
multiple times throughout history. See Ferguson’s surveydégon 1989] for further details.
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The algorithm’s payoff is, in general, a function of the ihgaquence and the algorithm’s
choices. We will mostly be discussing the case in which theffabtained by the algo-
rithm when selecting a st is the sum of the values of its element$S) = > ¢ v,.
(Alternative definitions of payoff have been consideredmliterature, including the time-
discounted secretary problem discussed later in thideuwtigvith S* € 7 denoting the set
maximizingv(S*), we say that an algorithm is-competitive if E [v(S)] > 1/a - v(S*)
for all possible valuation functions. The expectation is taken over all orderings (permu-
tations) and possible random choices of the algorithm. ffagethese determine the set
S.

We will refer to this general class of problems@eaneralized Secretary Problems. There
is an important difference between these problems and ibaal secretary problem. In
the secretary problem itself, the objective (hiring thetlaggplicant) is arordinal criterion,
i.e., it depends only on the relative quality of the applisaand not on any numerical
values ascribed to them. In the extensions that we conséter the objective is defined in
terms of the numerical values..

The best-known solutions to date for most of the extensidsudsed above involve a
simple algorithmic idea that is already foreshadowed instheretary algorithm described
above. The algorithms wait for some prescribed tiraed observe the best-valued feasible
subsetS C {1,...,t}. They then select additional elements if they “improve” gome
sense) upon the imaginary solutiSh The intuitive interpretation is that the algorithms try
to “get a feel for the market” before committing to any dewois. As such, they also bear
similarity with pricing algorithms which use a subset of thidders to determine prices for
the others (see, e.g., [Goldberg et al. 2001]).

4. THE K-CHOICE SECRETARY PROBLEM

When we consider selling identical items instead of just one, we are led to the follayvi
extension of the secretary problem: design an online algaorfor pickingk out ofn non-
negative numbers presented in random order, to maximizedgkpgected sum. In terms of
the formal framework described above, this correspondsdaase in whicll consists of
all subsets o/ with k& or fewer elements.

Whenk = 1, we have seen that the optimal competitive ratie. islow does the optimal
competitive ratio vary withk, and what does the optimal algorithm look like? Perhaps the
most natural algorithm to consider is the following genigation of Dynkin’s algorithm:

(1) Observe the firstn/e| elements.
(2) Remember the bektelements among these fifgt/¢|, and call this sef".>

(3) Whenever an element arrives whose value is greater tleamithimum-value element
in T, select this element and delete the minimum-value elememtt".

Babaioff et al. [2007] show, via a complex counting argumérdt this algorithm has com-
petitive ratio no worse thaa for all values ofk, not just fork = 1. A slightly modified
algorithm yields the same competitive ratio, with a muchpan proof. However, the
constant is far from optimal ask — oo. It was shown by Kleinberg [2005] that the opti-
mal competitive ratio is bounded from above by- C'/v/k and from below byl + ¢/VE

5If k > [n/e], then letT consist of the firsn/e| elements observed, together with— |n/e| “dummy
elements” of zero value.
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for some pair of constants < C. The upper bound is obtained using a recursive algo-
rithm. It partitions the sequence into an initial segmernt fimal segment of approximately
equal length, recursively chooses at mo& elements from the initial segment, and sets a
threshold value equal to thé/2)!" largest element of the initial segment. Subsequently,
it chooses all elements of the final segment that meet théshiold until exhausting its
allotted choices.

5. THE KNAPSACK SECRETARY PROBLEM

Suppose you are running the official Super Bowl web site, tvihias a slot for a banner
ad. You know that on Super Bowl day, the site will get some neindf impressions (say,
50 million), and you would like to sell the ad slot for thesepirssions to advertisers.
Each advertiser arrives with a request for some number ofésglons and the price he
is willing to pay. You must decide whether to accept the ratjusut of course, the total
number of impressions promised to different advertisermoaexceed 50 million. If all
advertisers arrive simultaneously, the problem of deteimg which requests to accept (to
maximize revenue) is an instance of the knapsack problethel&dvertisers arrive online
in a random order instead, we will call this problem teapsack Secretary Problem. In
terms of the formalism described above, each element/ has a weightv,, > 0 (in our
Super Bowl advertising example,, is the fraction of the 50 million impressions requested
by x), andZ consists of the sets whose total weight does not exteed

It is well known that the knapsack problem is NP-completel, #wat it admits an FPTAS
as well as a simpl@-approximation. The online knapsack problem, on the otlaerdh
is inapproximable to within any non-trivial multiplicagvfactor. Several papers have in-
vestigated online and stochastic knapsack problems witfingaassumptions [Kleywegt
and Papastavrou 1998; Dean et al. 2004; Lueker 1995; MarSpiccamela and Vercel-
lis 1995; Buchbinder and Naor 2005]. The Knapsack Secr&ewplem is unique among
these in that the set of cost/value pairaribitrary. Rather than making assumptions about
the distributions of these pairs, we circumvent the inagipnability of the online knapsack
problem by assuming that the elements arrive in a randonr.orde

Under this assumption, we are able to adap®tagproximation algorithm to our setting
to yield an algorithm with constant competitive ratio foetknapsack Secretary Problem.
As usual, the algorithm observes a constant fraction of estguwithout accepting any
of them. It ranks the requests by thealue density v, /w, and sets a threshold based
on the value densities of the sampled requests. After thialisiegment of the request
sequence is observed, the algorithm accepts elements dasectiterion which primarily
depends on whether their value density exceeds the thrkshtdwever, the algorithm
must be enhanced with some “tweaks” to accommodate requistse weight is so large
that they require a constant fraction of the knapsack’s @apd-or full details we refer the
reader to [Babaioff et al. 2007]. The algorithm presentestehis(10e)-competitive, but
the optimal competitive ratio for the knapsack secretagpfm is still unknown.

6. THE MATROID SECRETARY PROBLEM

Every generalized secretary problem that we have descsbéddr in this article admits a
constant-competitive algorithm. Unfortunately, this & always the case. Babaioff et al.
[2007] exhibit a generalized secretary problem for whichabgorithm has competitive
ratio better tharf2(logn/loglogn). Besides the problems discussed earlier, what other
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broad classes of generalized secretary problems admitithige with constant compet-
itive ratio? One promising possibility is thdatroid Secretary Problem [Babaioff et al.
2007], in which the ground sét and the feasible subsefsconstitute a matrofistruc-
ture. Many natural online auction scenarios fall into thenfework of Matroid Secretary
Problems.

(1) Thek-choice secretary problem gives rise to théform matroid, in which the inde-
pendent sets are exactly all sets of cardinality at ikost

(2) The movie ticket auction mentioned in Example 2 abovebeaformalized as follows.
Givenn customers with values, andm possible movies, as well as a bipartite graph
indicating which movies each customer would be interestednder known seating
capacities for each movie, find a subset of customers of maxitotal value who can
all see a movie of their choice simultaneously. The resgltimatroid, in which all
matchable sets of customers are independent, is cattethaversal matroid.

(3) The airline travel setting mentioned in Example 2 abaue loe formalized as follows:
each traveler, with value,, seeks a path from a source to a destination, and each edge
has a known limited capacity. The goal is to route a set ofgragsrs of maximum
total value, without violating capacity constraints. Sndas all sources are identical,
the resulting structure is known to be a matroid, calle@damoid.

(4) A well-known class of matroids with less natural motigatin the auction context
consists ofraphic matroids, in which customers correspond to edges of a graph, and
the goal is to select an acyclic set of maximum total value.

Matroids relate to secretary problems in a very natural iiy.consider what happens
if we relax Constraint 1 in the definition of the Generalizeztf@tary Problem, by stipu-
lating that the decision to reject an element remains imgke, but a decision to select
an element may later be revoked. (Constraints 2 and 3 arerstilrced. In particular, the
algorithm is not allowed to accept an infeasible set and laject some of its elements.)
For the original secretary problem, there is now an obvidgsréhm which always selects
the best element: whenever a new element has a value exgedidinevious values, reject
the current selection (if any) and select the new element.afRy set systeni/,Z), one
can naturally extend this greedy algorithm: whenever idisgible to improve the value of
the currently selected set by picking a new element and Iplysdiscarding a subset of the
previous selections, do so. If there is choice of which stitos#iscard, choose the one with
minimum total value. This greedy algorithm is guaranteeddtect the maximum-value
setS € 7 precisely when (U, Z) is a matroid.

This intuition motivates an appealing conjecture, namiest for some constant (per-
haps evernx = ¢), every Matroid Secretary Problem admits @tompetitive algorithm.
This conjecture is tantamount to stating that the obligat@mhonor past commitments is
not too costly, i.e., it only reduces the expected value efctosen subset by a factoraf
The conjecture is currently open. The best positive resulyéneral matroids to date is by
Babaioff et al. [2007] who give a®(log k)-competitive algorithm for Matroid Secretary
Problems wheré is therank of the matroid, the maximum size of a feasible set.

6Matroids [Oxley 1992] are combinatorial constructs gerieirag) the notion of independence in vector spaces.
A set systenfi/, 7) with Z C 2 is a matroid ifZ is nonempty and closed under containment, and it satisfies the
exchange axiom: for all setsA, B € Z with |B| > |A|, there is an elemerttc B \ A such thatd U {b} € 7.

The sets irZ are calledndependent sets.
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The matroid algorithm too consists of a sampling phase\i@lb by a selection phase.
In the sampling phase, the algorithm observes half of theethts and sets to be the
maximum value observed. After choosing a scale parameteiformly at random from
{0,1,2,...,log, k}, the algorithm in the selection phase greedily selectslathents of
value at leasti/27, so long as the addition does not violate feasibilitfhe intuition for
the competitive ratio is as follows. Let > ... > v, be the values of elements in the
optimum solution. For each of these elememntsthere is arf2(1/ log k) probability that
the selection threshold/2’ lies just belowv;. In that case, the reordering assumption
and matroid exchange property show that in expectatiomastd) (i) elements of value at
leastv; are selected by the algorithm. The bound now follows froradirity of expectation
(with a separate argument required if omlycontributes significantly to the optimum).

While the conjecture of a constant-competitive online atpar for all Matroid Secre-
tary Problems remains open, it has been resolved positfeelyeveral special classes of
matroids. Babaioff et al. [2007] give constant-compegitalgorithms for several classes of
matroids, including graphic matroids and transversal aids$r of bounded degree (corre-
sponding to the assumption that each moviegoer is onlydsted in a constant number of
movies). A subsequent paper by Dimitrov and Plaxton [200&ga constant-competitive
algorithm for general transversal matroids without thermted-degree restriction. Itis also
known that the class of matroids admitting a constant-caitiyee secretary algorithm is
closed under truncation, i.e., the operation of imposingrdioality constraint on the sets
in Z [Babaioff et al. 2007].

7. TIME DISCOUNTING

Our discussion so far has treated the value of an elemendapémdent of when it was
selected. In many intertemporal choice scenarios, thereemsons why this assumption
could be overly simplistic. For instance, in the auctiortiegt(such as our initial example
of selling a car), the seller could reinvest the revenue ditdin more interest from selling
early. These considerations motivate discounting theevallby a time-dependent factor
d; at timet: the value of a se§ is thus) _q v, - dr(,), Wherer(z) denotes the arrival
time of z in the random ordering of bids. We assume here that the digdaatorsd, are
known beforehand to the algorithm designer; they are naaked online.

Even the original secretary problem (i.e., choosing a sirgdément from a sequence
of n elements) becomes significantly more difficult with arligrdiscount factors. For
instance, Babaioff et al. [2008] prove that no online altori for the resultingdiscounted
Secretary Problem can achieve a better competitive ratio trﬁ%). In fact, even
knowing the entire unordered sét, | + € U} of values in advance, an online algo-
rithm cannot be better thay2-competitive. On the positive side, [Babaioff et al. 2008]
presents ai® (log n)-competitive online algorithm for the Discounted Secrgtaroblem,
nearly matching the lower bound. They also prove that mekelywing the expected
maximal benefit in advance (as is implied, for example, bywing the unordered set of
values) leads to dramatic improvements. The algorithmipicikhe first element whose
benefit is at least half of the expected maximal benefit is gleiMd-competitive algo-
rithm. Extensions of the Discounted Secretary Problem tooua matroid domains are
also discussed in [Babaioff et al. 2008]. Additional pesitresults have been obtained

“As described, the algorithm requires knowledge of the rainthe matroid,k. If the rank is unknown, the
algorithm may estimate it in the sampling phase with just a @tdtctor loss in the competitive ratio.
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for the Discounted Secretary Problem with specific “welké@deed” discount functions like
d(t) = p' [Rasmussen and Pliska 7576] &ft) = > ;" , 4" [Mahdian et al. 2008], as
well as in a continuous-time model in which the values of tleenents are independently
and identically distributed and element arrivals are gikgrsome renewal stochastic pro-
cess [Gershkov and Moldovanu 2007].

8. INCENTIVE COMPATIBILITY

Our motivating examples have been drawn from various ordingion scenarios. Yet we
have so far ignored incentive issues: the problem that tthédos may not reveal their val-
ues or other parameters correctly if a misrepresentatanmdstto benefit them. Fortunately,
all of the algorithms described so far araue-monotonic: each time a new elementis
about to be observed, there is a predetermined thresheld(possibly infinite) such that
2 will be selected if and only ib,, > u(x). Value-monotonicity directly implies that the
algorithms are truthful, so long as bidders can only mamifguheir declared value, and not
— for example — their arrival time. To convert the algorithnta a truthful mechanism,
one simply charges each bidden price ofu(z) if he is selected, and otherwise.

The situation becomes notably more complex if the agentstase some control over
their arrival times. For example, a person shopping foirartickets may choose not to
purchase them at the earliest possible time, instead prejeto wait until a later date
in hopes of a price reduction. To model agents’ ability t@t&gize about their arrival
time, we assume that each agent has an arrival tife¢ and departure timé(x), such
that the agents are randomly ordered by arrival time. Thetgeeported arrival and
departure times(x), d(xz) may differ from the actual arrival and departure times. éag
x is selected during the time intervial(x), d(x)], he receives a value of,; otherwise, he
receives no value for being selected. The agent’s abilitpamipulate his reported arrival
and departure times is constrained by his true arrival apédudere times; some common
assumptions areo early arrivals (a(z) > a(z)), no late departures (d(z) < d(x)), or
both. These assumptions are justified if the agent's preseac be directly verified, or
(in the case of “no early arrivals”) if we think af(x) as the time at which the agent first
becomes aware of the existence of the auction or of his owined®sparticipate in it.

Some of the algorithms discussed earlier in this articlelmatransformed into truthful
online mechanisms in the no-early-arrivals model, witthibr no loss in the competitive
ratio. Specifically, a variant of Dynkin’s algorithm is thitil ande-competitive in the no-
early-arrivals model [Hajiaghayi et al. 2004], and Kleirgie (1 + O (k~'/?))-competitive
algorithm for thek-choice secretary problem [Kleinberg 2005] can be tramséat into a
truthful and(1 + O(k~'/?))-competitive mechanism for thle-choice secretary problem
in the no-early-arrivals model. The basic idea for both @fsth results is to modify the
original algorithm so that whenever it sets a new threshaltepit scans through the list of
agents who have not yet departed and selects those whosexxakeeds the new threshold,
even if they arrived much earlier. At the departure time of agent who was selected as
a winner of the auction, the agent is charged a price equaktoninimum threshold price
attained during the agent'’s reported arrival-departuterial, even if this price is lower
than the threshold price at the time the agent was selectedvamer.
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9. CONCLUSIONS

The theory of online algorithms for resource allocation hagn successful in dealing
with many combinatorially complex optimization problenbsit often suffers from overly
pessimistic bounds based on pathological worst-case dgam®ptimal stopping the-
ory (including the study of secretary problems) avoids ¢hpathologies by engaging in
average-case analysis of online algorithms on random $nput until recently, the theory
has primarily been limited to combinatorially simple prels such as picking arlyel-
ements in a sequence ofnumbers. There is a clear opportunity to bring togethersdea
from these two areas and reap the benefits of both.

The resulting model of worst-case inputs presented in aaianorder delicately traces
a boundary between the pessimistic bounds of online algostand the strong assump-
tions of i.i.d. sequences. Intuitively, it captures thet fhat the adversary can choose the
input, but not its precise presentation. In this respeds &imilar to the celebrated re-
sults on smoothed analysis (e.g., [Spielman and Teng 2004Bre worst-case inputs are
perturbed by small amounts of random noise, and lead tofgigntly improved practical
performance. Similarly, very simple online algorithmsesftachieve surprisingly strong
bounds in the Secretary framework. Indeed, a similar phemam has been observed for
random reordering of inputs to online facility location [Mason 2001].

In this article, we have sketched some initial successebef@eneralized Secretary
research program and have illustrated their applicatiorentine mechanism design. The
field is replete with open questions, some inspired primdny theoretical considerations
(such as the matroid secretary conjecture presented @adtaers directly motivated by
the application to auctions. The latter include multi-uanttions, combinatorial auctions,
and markets in which hard supply constraints are replacedbgble production costs.
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