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ABSTRACT
Self-assembly is the ubiquitous process by which simple ob-
jects autonomously assemble into intricate complexes. It has
been suggested that intricate self-assembly processes will ul-
timately be used in circuit fabrication, nano-robotics, DNA
computation, and amorphous computing. In this paper, we
study two combinatorial optimization problems related to
efficient self-assembly of shapes in the Tile Assembly Model
of self-assembly proposed by Rothemund and Winfree [18].
The first is the Minimum Tile Set Problem, where the goal
is to find the smallest tile system that uniquely produces a
given shape. The second is the Tile Concentrations Prob-
lem, where the goal is to decide on the relative concentra-
tions of different types of tiles so that a tile system assembles
as quickly as possible. The first problem is akin to finding
optimum program size, and the second to finding optimum
running time for a “program” to assemble the shape.

We prove that the first problem is NP-complete in general,
and polynomial time solvable on trees and squares. In order
to prove that the problem is in NP, we present a polynomial
time algorithm to verify whether a given tile system uniquely
produces a given shape. This algorithm is analogous to a
program verifier for traditional computational systems, and
may well be of independent interest. For the second prob-
lem, we present a polynomial time O(log n)-approximation
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algorithm that works for a large class of tile systems that
we call partial order systems.

1. INTRODUCTION
In this paper we study two optimization problems re-

lated to efficient self-assembly of geometric shapes. Self-
assembly is the ubiquitous process by which simple objects
autonomously assemble into intricate complexes. Nature
provides many examples: Atoms react to form molecules.
Molecules react to form crystals and supramolecules. And
self-assembly of cells plays a part in the development of or-
ganisms. Simple self-assembly schemes are already widely
used in chemical syntheses – it has been suggested that more
complicated schemes will ultimately be useful for circuit fab-
rication, nano-robotics, DNA computation [21, 15, 14, 7,
24], and amorphous computing [1]. Several promising ex-
periments along these lines have been recently reported; a
summary of some recent experimental activity is presented
later in this introduction.

In accordance with its practical importance, self-assembly
has received increased theoretical attention over the last few
years. Adleman [2] has proposed a mathematical model
of linear self-assembly, and Adleman et al. [3] studied the
equilibrium states of these systems. For 2-dimensional self-
assembly, Winfree has proposed the Tile Assembly Model
[23]. This model considers the assembly of rigid square ob-
jects or tiles. Elementary steps under this model are simple
– assembly starts from a single seed tile and proceeds by
the addition of single tiles – yet the structures that may be
formed are surprisingly complex. In theory, the Tile Assem-
bly Model is universal and relatively small sets of tiles may
be used to simulate arbitrary Turing Machines or cellular
automata [23]. Perhaps the most interesting facet of this
result is not that self-assembly may be able to compute, per
se, but rather that a set of tiles and binding interactions may
be viewed as a program to build a desired pattern or shape.
In the language of this paper such a program is known as a
tile system.

Working under the assumption that an arbitrary tile sys-
tem can be implemented, researchers have begun to ex-
plore complexity-theoretic questions about the Tile Assem-
bly Model. In particular, some of the recent work has fo-
cused on the assembly of n × n squares. Rothemund and
Winfree [18] studied the program size complexity (the num-
ber of different tile-types required) of assembling such squares.
Adleman et al. [4] added the notion of time complexity to



the Tile Assembly Model and applied it to such squares.
To analyze the assembly time for a shape, they describe
the assembly process as a continuous time Markov chain.
The assembly time depends not only on the tile system, but
also on the relative concentration of each tile-type. They
also described a tile system for assembling n × n squares
that simultaneously achieved the asymptotically optimum
program size of Θ(log n/ log log n) and the asymptotically
optimum expected time complexity of Θ(n).

The study of self-assembled squares has been fruitful and
yielded insights into “programming techniques” for tile sys-
tems. Thus it may be worthwhile to study the program size
and time complexity for assembling other important specific
shapes, such as spirals, fractals, or rings. In this paper, how-
ever, we consider two combinatorial optimization problems
for generalized shapes:

1. The Minimum Tile Set Problem: Given a shape,
find the tile system with the minimum number of tile-
types that can uniquely self-assemble into this shape.

2. The Tile Concentrations Problem: Given a shape
and a tile system that uniquely produces the given
shape, assign concentrations to each tile-type so that
the expected assembly time for the shape is minimized.

We believe that good solutions to these problems are im-
portant for developing a mature, algorithmic theory of self-
assembly and for applying this theory to real-life scenarios.
In this paper we report partial progress towards resolving
these problems.

We first prove that the decision version of the Minimum
Tile Set problem is in NP. For proving membership in NP,
we need an algorithm to verify in polynomial time whether
a given tile system uniquely assembles into a given shape.
We note that since tile systems are analogous to programs
for assembling a shape, such an algorithm is analogous to a
program verifier and may well be of independent interest in
practical settings. In this paper, we present such an algo-
rithm for the case where the tile system has a unique seed,
and the shape must have a single occurrence of the seed. A
recent result by Cook et al. [5, 17] allows an extension of our
basic verification algorithm to the general case where the tile
system can have multiple seeds and there can be multiple
occurrences of the seed within the shape. We then show that
the Minimum Tile Set Problem is polynomial time tractable
on tree-shapes and squares 1. To prove NP-hardness, we re-
duce 3-CNF SAT to the Minimum Tile Set Problem. We
need to use the polynomial time algorithm for the minimum
tile set problem on tree-shapes as a subroutine in the reduc-
tion. We also use some ideas found in a paper by Lagoudakis
and LaBean [14]. An obvious and important open problem
is to obtain upper and lower bounds on the approximation
ratio for the Minimum Tile Set Problem.

For the Tile Concentrations Problem, we conjecture that
finding an optimum solution is #P-hard. We then define
partial order systems; such systems include tile systems that
count [18], assemble into squares [18, 4] and trees, per-
form base-conversion of numbers [4], simulate Turing ma-
chines [23, 18], and simulate 1-dimensional cellular automata.
We present a polynomial time, O(log n)-approximation algo-

1The algorithm for squares assumes a constant temperature;
see section 4 for details.

rithm for the Tile Concentrations Problem restricted to par-
tial order systems. Our algorithm approximates the stochas-
tic self-assembly process by a carefully defined determinis-
tic process. The optimization problem for the deterministic
process is a convex program and may have exponentially
many constraints. However, a polynomial time membership
oracle exists for this program, allowing us to optimize the
deterministic process in polynomial time. It is interesting
to note that any tile system that uniquely produces a tree-
shape must be a partial order system; further, we prove
that for tree-shapes, the minimum tile set also leads to the
fastest assembly. Finding the exact computational status
of the Tile Concentrations Problem remains an important
open question.

We define the Tile Assembly Model and the two opti-
mization problems formally in section 2. The proof that the
Minimum Tile Set Problem is in NP is given in section 3;
in particular this section contains a description of the al-
gorithm which verifies whether a given tile system uniquely
assembles into a given shape. We outline our polynomial
time algorithm for the Minimum Tile Set Problem on tree-
shapes and squares in section 4. The proof of NP-hardness
of the Minimum Tile Set Problem is sketched in section 6.
Section 5 details our O(log n)-approximation algorithm for
the Tile Concentrations Problem on partial order systems.

We now summarize some recent experimental activity in
the field of self-assembly. This experimental activity gives us
hope that sophisticated self-assembly systems may be imple-
mented in the near future and also offers some insight into
the kind of theoretical questions that may be important for
self-assembling systems.

1.1 Summary of recent experimental activity
While tile systems that generate interesting computations,

patterns and shapes are not very complex, the use of natural
systems to implement them seems very difficult. Instead,
researchers have attempted to engineer them using either
macroscopic plastic tiles that assemble at an oil/water in-
terface or nanoscale multi-stranded DNA motifs designed to
act as closely to the abstract tiles of the tile assembly model
as possible. A number of challenges must be overcome be-
fore either system can be used to implement interesting tile
systems, in particular (i) nucleation of structures must be
controlled so that their growth begins with a specified seed
tile (ii) the rate of errors (events in which a tile binds where
it should not bind) must be minimized. Using centimeter-
sized plastic tiles Rothemund [16] has explored the simula-
tion of simple 1-dimensional cellular automata on a partic-
ular input. Controlled nucleation could not be achieved, so
the desired input could not be specified. Instead, random
simulations of the cellular automata were formed with an
error rates of 2.8 %. DNA systems, more technologically in-
teresting than the plastic tile systems because of their size,
are being actively pursued by at least two research groups
and the problems of errors and controlled nucleation are be-
ing emphasized. Winfree et al. [22] demonstrated that (i)
DNA strands can self-assemble into 13 nanometers × 4 nm
× 2 nm DNA tiles and (ii) that these tiles can further self-
assemble into periodic crystals of approximately a quarter
million tiles and several microns in size. Mao et al.[13] have
reported the creation of small 2-dimensional assemblies of
DNA that compute the cumulative XOR of pairs of 4-bit
strings. For this computation, the first reported using 2-



dimensional self assembly, error rates on the order of 3-5 %
were observed. While controlled nucleation is part of the de-
sign of this experiment, it was not measured. In theory, with
proper control of experimental temperature, DNA systems
should be able to achieve reasonably large structures (say
10,000 tiles) with error rates of less than 10−4 in reasonable
amounts of time (say a week) and nucleation should be well-
controlled [23]. New experimental DNA systems, designed
explicitly so that error and nucleation rates may be easily
measured, are now being explored [17]. Already tiles have
been held in a supersaturated state (one prerequisite for
controlled nucleation) for approximately 6 hours [17]. The
outlook for experimental self-assembly using these systems
is promising.

Gracias et al.[8] have used the self-assembly of small plas-
tic and metal objects to fabricate simple 3-d circuits of light
emitting diodes. Lopinski et al.[11] have demonstrated the
self-assembly of molecular silicon structures. And, most re-
cently, Bell Labs has announced the construction, by self-
assembly, of the world’s first molecular-thickness transistor
[19].

2. DEFINITIONS
The Tile Assembly Model was originally proposed by Rothe-

mund and Winfree [18]. It extends the theoretical model of
tiling by Wang [20] to include a mechanism for growth based
on the physics of molecular self-assembly. Informally each
unit of an assembly is a square with glues of various types
on each edge. The tile ”floats” on a two dimensional plane
and when two tiles collide they stick if their abutting sides
have compatible glues.

Formally, a tile is an oriented unit square with the north,
east, south and west edges labeled from some alphabet Σ of
glues. We begin with a triple 〈T, g, τ〉 where T is a finite set
of tile-types, τ ∈ Z+ is the temperature, and g is the glue
strength function from Σ × Σ to Z+ ∪ {0}, where Σ is the
set of edge labels and N is the set of natural numbers. It is
assumed that null ∈ Σ, g(x, y) = g(y, x) for x, y ∈ Σ, and
g(null, x) = 0 for all x ∈ Σ. For each tile type i ∈ T , the
labels of its four edges are denoted σN (i), σE(i), σS(i), and
σW (i).

A configuration is a map from Z2 to T ∪ {empty}. For

t ∈ T , Γ
(x,y)
t is the configuration such that Γ

(x,y)
t (i, j) = t

iff (i, j) = (x, y) and empty otherwise. Let C and D be
two configurations. Suppose there exist some i ∈ T and
(x, y) ∈ Z2 such that C(x, y) = empty, D = C except at
(x, y), D(x, y) = i, and

g(σE(i), σW (D(x + 1, y)) + g(σW (i), σW (D(x − 1, y)) +

g(σN (i), σW (D(x, y + 1)) + g(σS(i), σW (D(x, y − 1)) ≥ τ.

Then we say that the position (x, y) in C is attachable, and
we write C →T D to denote the transition from C to D in
attaching tile i to C at position (x, y). Informally, C →T D
iff D can be obtained from C by adding a tile to it such that
the total strength of interaction in adding the tile to C is at
least τ .

A tile system is a quadruple T = 〈T,S, g, τ〉, where T, g, τ
are as above and S is a set of supertiles called seed supertiles.
Intuitively a supertile is a connected and finite assembly of
tiles. Supertiles are the initial configuration of the assembly
process or the objects obtained by adding individual tiles to
an existing supertile.

Let →∗
T denote the reflexive transitive closure of →T, and

let →+
T

be the transitive closure of →T. A derived supertile
of the tile system T is a supertile such that s →∗

T A for some
s ∈ S. A terminal supertile of the tile system T is a derived
supertile A such that there is no supertile B, different from
A, such that A →∗

T B. If there is a terminal supertile A such
that for all derived supertile B, B →∗

T A, we say that the
tile system uniquely produces A. We use the term Prod(T)
to refer to the set of derived supertiles of T, and the term
Term(T) to refer to the set of terminal supertiles of T.

Given a tile system T which uniquely produces A, we say
that the program size complexity of the system is |T | i.e.
the number of tile-types.

In this paper, we adopt the restriction, suggested by Rothe-
mund and Winfree [18], that S contains a single seed s con-
sisting of a single tile, and that g(α, β) = 0 for α, β ∈ Σ with
α 6= β.

Adleman et al. [4] proposed a definition of the time com-
plexity of self-assembly, which we will now explain. We as-
sociate with each tile type i ∈ T a nonnegative probability
P (i), such that

∑
i∈T P (i) = 1. We assume that the tile

system has an infinite supply of each tile type, and P (i)
models the concentration of tile i in the system – the prob-
ability that a tile of type i is chosen when a tile is drawn at
random. Now self-assembly of the tile system T corresponds
to a continuous time Markov process where the states are in
a one-one correspondence with derived supertiles, and the
initial state corresponds to the seed s. There is a transition
of state B to C iff B →T C, and the rate of the transition
is P (i) if C is obtained from B by adding a tile of type i.
Suppose the tile system uniquely produces a supertile AT .
It would follow that AT is the unique sink state. Given the
Markov process, the time for reaching AT from s is a ran-
dom variable. The time complexity for producing AT from
s is defined as the expected value of this random variable.

Informally our definition of time models a system wherein
a seed ”floats” in solution encountering tiles at random. The
higher the concentration of a particular tile the higher the
rate at which it is encountered. When a tile is encountered
which has sufficiently strong interaction with the seed, the
tile is incorporated. By this process of accretion the seed
grows larger and larger.

A tile position is a pair (i, j) of integers. A pair (i1, j1), (i1, j2)
of tile positions is said to be adjacent if |i1−i2|+|j1−j2| = 1.
For a finite set A of tile positions, let G(A) denote the graph
on A defined by the adjacency relation; we will call this the
adjacency graph. A set A of tile positions is said to be con-
nected if the adjacency graph is connected; we will often
use the term “shape” to refer to a finite connected set of tile
positions. Two sets of tile positions are said to be isomor-
phic if they can be made identical by translation2. Given
two shapes of size n each, we can check whether they are
isomorphic in time Θ(n).

A tile system is said to uniquely produce a shape if it
uniquely produces a supertile that has this shape.

Definition 2.1. Minimum tile set problem: Given
a shape A and a temperature τ , find T = 〈T, {s}, g, τ〉 such
that |T | is minimal and T uniquely produces A.

2If the adjacency graphs of two shapes are isomorphic, it
doesn’t necessarily imply that the shapes themselves are iso-
morphic.



Definition 2.2. Minimum tile set decision prob-

lem: Let L = {(A, c, τ)/∃T = 〈T, {s}, g, τ〉 with |T | ≤ c
that uniquely produces the shape A} Given a triple (A, c, τ),
determine whether (A, c, τ) ∈ L.

Let T = 〈T, {s}, g, τ〉. P is said to be a concentrations
function iff P : T → [0, 1] and

∑
∀i∈T P (i) = 1.

Definition 2.3. Tile Concentrations Problem: Let
A be a shape, and let T = 〈T, {s}, g, τ〉 be a tile system
that uniquely produces A. Let t be the time to assemble A.
Given T, find a concentrations function P such that E[t] is
minimum.

3. VERIFYING UNIQUE ASSEMBLY OF A
SHAPE BY A TILE SYSTEM

We will first present an algorithm for verifying whether
a given tile system uniquely produces a given supertile and
then later extend it to shapes. Our algorithm establishes
that the Minimum Tile Set problem is in NP, and may also
be of independent interest in practical settings to verify a
proposed mechanism for self-assembling a desired shape. As
explained in the introduction, we will assume that the tile
system has a single seed tile-type, and there can only be
one occurrence of the seed in the shape; we will further
assume that this seed tile must be at position (0, 0). Recent
generalizations of our work by Cook et al.[6] remove these
restrictions.

Throughout this section, we assume that we have some
fixed tile system T = 〈T,S, g, τ〉. Whenever we speak of a
supertile being produced, uniquely produced etc., it is with
respect to this tile system.

At the core of deciding unique production is a simple
greedy algorithm that grows the maximum produced subtile
of a given supertile A. A′ is called a subtile of A if A′(x, y) =
A(x, y) for each site (x, y) with A′(x, y) 6= empty. Further,
A′ is said to be a maximum produced subtile of A if A′ is
a subtile of A, A′ is in Prod(T), and in addition, each pro-
duced subtile A′′ of A is also a subtile of A′. The existence of
a unique maximum produced subtile follows implicitly from
the correctness of the following algorithm:

Algorithm Greedy-Grow (A)

1. Start with A′ = Γ
(0,0)

A(0,0).

2. While there is a site (x, y) with A(x, y) = t and

A′(x, y) = empty such that t can be added to A′

at (x, y), add it.

Lemma 3.1. The algorithm Greedy-Grow computes the max-
imum produced subtile of A. It can be implemented to run
in time O(|A|).

Proof. It is immediately clear that the output A′ is a
produced subtile, so we only need to prove that it is maxi-
mum.

Assume that it is not, and let B be another produced
subtile of A with a site (x, y) such that A′(x, y) = empty

and B(x, y) = A(x, y) 6= empty. Fix some order of tile
additions for B, and let (x, y) be the first site at which a
tile with the above property was added in this order. Let
B′ be the subtile immediately before the addition — by
definition, B′ is also a produced subtile of A′. Because the
bond strengths are non-negative, and the tile A(x, y) could

be added to B′ at site (x, y), it can still be added to A′

at site (x, y), contradicting the termination condition in the
loop of the greedy algorithm.

To implement the algorithm to run in linear time, one can
simply maintain a list of all sites at which tiles can be added
immediately. Whenever a tile is added, all its neighbors are
checked, and added to the list if they are now candidates for
addition.

The algorithm for deciding unique production tests all
three necessary properties separately, i.e. whether a supertile
is produced, terminal, and unique.

Algorithm Unique-Supertile (A)

1. Let A′ = Greedy-Grow(A).
If A′ 6= A, then A is not produced.

2. For all non-empty sites (x, y), test whether

any tile t can be added at an adjacent site.

If yes, then A is not terminal.

3. For all non-empty sites (x, y), let A(x,y)

be the supertile A with the tile at (x, y) removed.

Let A′

(x,y) = Greedy-Grow(A(x,y)).

If a tile t 6= A(x, y) can be added to A′

(x,y)

at (x, y), then A is not uniquely produced.

If A does not fail any of the above three tests,

then A is uniquely produced and terminal.

Theorem 3.2. The above algorithm decides unique ter-
minal production in time O(|A|2 + |A||T |).

Proof. The first and second steps obviously filter out
exactly non-produced and non-terminal assemblies. It is
also clear that when the algorithm claims that a supertile is
not uniquely produced, it possesses a witness for the non-
uniqueness (in the form of the subtile A′

(x,y)), so it only
remains to show that if a terminal supertile A is not pro-
duced uniquely, then the algorithm will discover a witness
for the non-uniqueness.

Let A be not uniquely produced, and B be another termi-
nal supertile produced by T. Fix some order in which the
tiles of B were added, and let (x, y) be the first site in this
order at which a tile t = B(x, y) 6= A(x, y) was added. Let
B′ denote the subtile right before t was added at site (x, y).

By definition of (x, y), B′ is a subtile of A, and more
importantly, of A(x,y). Because B′ is produced, and A′

(x,y) is

the maximum produced subtile of A(x,y), B′ is also a subtile
of A′

(x,y). The bond strength function is non-negative, so

the tile t can also be added to A′

(x,y) at site (x, y), and the
algorithm will discover this fact in step 3, thus finding a
witness for non-uniqueness.

To bound the running time, notice that step 1 takes time
O(|A|), step 2 time O(|A||T |), because we check each of
possibly |T | kinds of tiles at each of at most 4|A| locations,
and step 3 takes time O(|A|2), because we are running |A|
times Greedy-Grow.

Building on this algorithm, we can test for the unique
production of shapes.

Algorithm Unique-Shape (S)
1. Let A be any supertile grown by T,

where growth is terminated

after |S| + 1 steps if necessary.



2. If A does not have shape S, then the

tile system does not uniquely produce S.
3. Otherwise, use Unique-Supertile (A) to

determine whether A is uniquely produced.

S is uniquely produced iff A is.

Theorem 3.3. The algorithm Unique-Shape (S) decides
in time O(|A|2 + |A||T |) whether a tile system uniquely pro-
duces the shape S.

Proof. Obvious.

4. MINIMUM TILE SET PROBLEM FOR
TREES AND SQUARES

4.1 Tree-shapes
We will assume in this section that the temperature τ is 1;

it is not hard to see that any tile system to uniquely produce
a tree can be transformed into one that has τ = 1 without
increasing the size of the tile system. We will assume that
we are given a tree-shape A, and also that we know the
position of the seed. We will call this the root. For any tile
position (i, j) ∈ A, define A(i, j) to be the set of tile positions
corresponding the sub-tree rooted at (i, j) in G(A); we will
refer to this set of tile positions as the sub-shape at (i, j).
Also, let P (i, j) denote the tile position which is the parent
of (i, j) in the tree G(A) i.e. the tile position which occurs
just before (i, j) in the path from the root to (i, j) in G(A).
Observe that each tile position except the root has a unique
parent; the parent of the root is defined to be the root itself.

Definition 4.1. Two tile positions in a tree-shape A are
said to be isomorphic if their corresponding sub-shapes are
isomorphic.

Definition 4.2. Two tile positions (i1, ji) and (i2, j2) in
a tree-shape A are said to be identically entered if the vectors
P (i1, j1) − (i1, j1) and P (i2, j2) − (i2, j2) are identical.

Definition 4.3. Two tile positions in a tree-shape are
said to be compatible if they are identically entered as well
as isomorphic.

The “compatible” relation defined above is an equivalence
relation and hence partitions the set of tile positions in A
into equivalence classes. Let Γ represent a set of tile-types
that uniquely assembles into a tree-shape A with the seed
at the root. Let Γ(i, j) represent the tile-type that goes to
position (i, j) ∈ A. We now state the following two lemmas;
the proof of these lemmas is straightforward and is omitted
from this version.

Lemma 4.1. If Γ(i1, j1) = Γ(i2, j2), then (i1, j1) and (i2, j2)
must be compatible.

For positions (i1, j1). (i2, j2) in A such that Γ(i1, j1) 6=
Γ(i2, j2), let Merge(Γ, i1, j1, i2, j2) represent the set of tile-
types obtained from Γ by performing the following transfor-
mations:

1. For each glue-label g2 on an edge of tile-type Γ(i2, j2),
replace all occurrences of g2 in all tile-types by g1,
where g1 is the glue-label on the corresponding edge
of Γ(i1, j1).

2. Remove the tile-type Γ(i2, j2) from Γ.

Intuitively, Merge(Γ, i1, j1, i2, j2) is the set of tile-types ob-
tained by allowing the tile-type Γ(i1, j1) to attach wherever
the tile-type Γ(i2, j2) could attach in the original set of tile-
types Γ; the tile-type Γ(i2, j2) then becomes redundant and
is removed.

Lemma 4.2. If (i1, j1) and (i2, j2) are compatible but Γ(i1, j1) 6=
Γ(i2, j2), then the set Merge(Γ, i1, j1, i2, j2) also uniquely
assembles A.

The following theorem is immediate from lemmas 4.1 and
4.2; we omit the proof. This theorem directly leads to a
polynomial time algorithm for the Minimum Tile Set Prob-
lem on trees, and is also useful for the proof of NP-hardness
in section 6.

Theorem 4.3. A set of tile-types Γ that uniquely assem-
bles into a tree-shape A (with the seed at the root) is the
smallest such set iff the following is true:

Γ(i1, j1) = Γ(i2, j2) iff (i1, j1) and (i2, j2) are
compatible.

As observed before, isomorphism of two shapes can be
checked in time linear in the size of the shapes. Finding
whether two tiles are identically oriented takes Θ(1) time.
Thus, we can find whether a pair of tile positions is com-
patible in time Θ(n), and consequently, divide the entire set
of tile positions (i, j) into equivalence classes in time Θ(n3).
By theorem 4.3, the number of equivalence classes is exactly
the minimum number of tile-types required to assemble the
given tree-shape; a different tile-type is associated with each
equivalence class. The above discussion pertained to tree-
shapes with a given seed. If we are not given the seed then
we can guess each of the tile positions to be the seed in turn
and pick the best solution.

In order to complete the construction, we need to describe
how to assign glues to each tile-type in the optimum solu-
tion. For each tile-type T , consider a tile position (i, j) which
belongs to the equivalence class corresponding to T . We will
now explain how to assign a glue to the “West” edge of T .
Consider the tile position (i− 1, j). If this tile position does
not belong to the tree-shape, then assign a null glue to the
“West” edge of T . If the tile position (i − 1, j) does belong
to the tree-shape, then let T ′ be the tile-type corresponding
to the equivalence class of tile position (i − 1, j). Label the
“West” edge of T by the set {T, T ′}. Assign glues to the
other edges of T in a similar fashion. It is easy to see that
in the case considered above, the “West” side of T and the
“East” side of T ′ will receive the same glue.

4.2 Squares
Let us assume that the temperature τ is bounded by some

constant. Let N(K) denote the number of tile systems with
at most K tile-types. There are at most 4K sides, and
each must choose one of at most 4K glues and at most τ
different glue strengths. Therefore, N(K) ≤ (4K)f(K) for
some function f(K) = O(K). Adleman et al. [4] proved
that the optimum program size for assembling an n × n
square is O(log n/ log log n). Consequently, the number of
tile systems which use at most O(log n/ log log n) tile-types

is nO(1). For each of these (polynomially many) tile systems,
we can use the algorithm outlined in section 3 to determine



whether they uniquely assemble into an n× n square. Note
that we assume that the input size is the number of tiles in
the square, and not the number of bits needed to represent
n. This is consistent with our definition of the size of the
problem as the size of the shape. The algorithm outlined
above will also work for “thick” rectangles ie. rectangles
where the width is at least logarithmic in the height; details
are omitted from this version.

5. TILE CONCENTRATIONS PROBLEM
In section 4 we have addressed the problem of finding

the smallest tile system that produces a particular shape.
In this section we will discuss the problem of minimizing
the time it takes to finish an assembly process given a tile
system. In this section, we will concentrate on partial order
systems, which we define below. This is a large class of tile
systems that includes tile systems that count [18], assemble
into squares [18, 4] and trees, perform base-conversion of
numbers [4], simulate Turing machines [23, 18], and simulate
1-dimensional cellular automata.

Assume that we are given a tile system T and a shape S
that is uniquely produced by T. Let A denote the supertile
that is uniquely produced by T and has shape S. Further
assume that the tile system has a unique seed tile-type that
occurs only once in A; without loss of generality, assume
that the position in the shape S corresponding to the seed
is (0, 0). Let Γ(i, j) represent the tile-type at position (i, j).
Let ti,j represent the time when the tile at position (i, j)
attaches to the growing assembly. Define a partial order ≺
on the tile positions in S such that (i, j) ≺ (p, q) iff ti,j ≤ tp,q

for all possible ways of assembling shape S using T.

Definition 5.1. A tile system T is said to be a partial
order system if it is singly seeded, uniquely produces a shape
S which has only one occurrence of the seed, and if for all
adjacent positions (i, j),(p, q) in S, either (i, j) ≺ (p, q), or
(p, q) ≺ (i, j), or the strength of the glues connecting tiles at
positions (i, j) and (p, q) is zero.

Given a partial order system T and its uniquely produced
shape S, consider the directed acyclic graph G defined on S
by the relation ≺. This graph will have only one source node
(ie. the seed, (0, 0)). Let P be the set of all source-to-sink
paths in G. Let Xi,j represent the time it takes for the tile
at position (i, j) to attach after it becomes attachable. Xi,j

is an exponential random variable with mean 1/C(Γ(i, j))
where C(Γ(i, j)) is the concentration of the tile-type at po-
sition (i, j). For any path P in P, let XP =

∑
(i,j)∈P

Xi,j .

Now, the assembly time is X(C) = maxP∈P XP ; we use
the notation X(C) to make explicit the dependence of X
on the vector of concentrations C. Now, the tile concentra-
tion problem is to find non-negative concentrations C(Γ) for
each tile-type Γ such that

∑
Γ∈T C(Γ) = 1 and E[X(C)] is

minimized.
This is an involved problem, since max and E do not

commute. We have not been able to resolve whether this
problem is NP-hard or in PTIME. However, based on the
similarity of this problem to one studied by Louth, Mitzen-
macher and Kelly [12] we make the following conjecture:

Conjecture 5.1. Solving the Tile Concentrations Prob-
lem for partial order systems is #P-hard.

In order to obtain an O(log n)-approximation algorithm
for this problem, we approximate the assembly process by
a deterministic process where the time Y (i, j) for tile (i, j)
to attach is a deterministic variable with value 1/C(Γ(i, j))
ie. Y (i, j) = E[Xi,j ]. We define YP and Y (C) analogous to
XP and X(C). Observe that Y (C) = maxP E[XP ] whereas
X(C) = maxP XP . The following theorem establishes that
optimizing Y immediately leads to an O(log n)-approximation
for X.

Theorem 5.2. Let C∗
Y represent a vector of concentra-

tions that minimizes Y and C∗
X represent a vector of con-

centrations that minimizes X. Then, E[X(C∗
Y )] = O(log n) ·

E[X(C∗
X)].

Proof Sketch: For any vector of concentrations C, we
have Y (C) = maxP E[XP ]; let P ′ be the path where this
maximum is achieved. Now, Y (C) = E[XP ′ ]. Clearly,
XP ′ ≤ maxP XP , and hence, by taking expectations on both
sides, we obtain E[XP ′ ] ≤ E[maxP XP ]. This immediately
implies that Y (C) ≤ E[X(C)]. Let γ = max(i,j)∈S(Xi,j/Yi,j).
Since there are n tiles in the shape, and Xi,j are expo-
nential random variables with mean Yi,j , it follows that
E[γ] = O(log n). Also, XP ≤ γYP which implies that
E[X(C)] = O(log n) · Y (C).

Now, E[X(C∗
Y )] = O(log n)Y (C∗

Y ). But Y (C∗
Y ) ≤ Y (C∗

X)
by the optimality of C∗

Y for Y , and hence, Y (C∗
Y ) ≤ E[X(C∗

X)].
This completes the proof of the theorem.
The problem now reduces to determining C∗

Y . Define xΓ =
1/(C(Γ). We will need the following lemma before proceed-
ing:

Lemma 5.3. For all tile-types Γ, C∗
Y (Γ) ≥ 1/n2.

Proof. The length of the longest path in G is at most n,
and there are at most n tile-types. Assigning a concentration
of 1/n to each tile-type results in an upper bound of n2 for
Y . Hence, Y (C∗

Y ) ≤ n2. But Y (C∗
Y ) ≥ 1/C∗

Y (Γ) for all
tile-types Γ, which proves the result.

The optimization problem is now the following:

Find Y ∗ = min Y, such that
∑

(i,j)∈P

xΓ(i,j)) ≤ Y for all source-sink pathsP ∈ P

∑

Γ∈T

1/xΓ ≤ 1

0 ≤ xΓ ≤ n2

The above program is not linear because of the constraint∑
Γ∈T 1/xΓ ≤ 1. Also, since the number of source-sink paths

may be exponential, the number of constraints in exponen-
tial. However, it is easy to find a membership oracle as well
as a separation oracle for the problem, using the longest path
problem on directed acyclic graphs. Further, even though
the above problem is not an LP, it is still a convex program,
and has a good initial bounding box because of the con-
straints 0 ≤ xΓ ≤ n2. Hence, the optimum solution to this
program can be found in polynomial time using the ellip-
soid algorithm [10], completing the O(log n)-approximation
algorithm. A thorough discussion on how to solve convex
programs from membership, separation and violation ora-
cles can be found in [9].



5.1 Optimal Tile Concentrations and Smallest
Tile Set problems for trees:

In computational problems it is common to find time-
space tradeoffs. The fastest program to perform a compu-
tation is not necessarily the smallest. In self assembling
trees under our model, however, there is no such tradeoff.
In section 4 we presented an algorithm for solving the Min-
imum Tile Set Problem on trees. Given a tile system T

that uniquely produces a shape S, let X∗(T) refer to the
optimum solution to the Tile Concentrations Problem; note
that we do not know how to compute X∗(T) in polynomial
time. We omit the proof of the following theorem:

Theorem 5.4. For all tree-shapes S, the tile system T

that minimizes X∗(T) is also a minimum size tile system
that uniquely assembles S.

6. NP-HARDNESS OF MINIMUM TILE SET
PROBLEM

Theorem 3.3 in section 3 states that the decision version
of the Minimum Tile Set Problem is in NP. In this section,
we sketch the proof that this problem is also NP-hard, and
hence NP-Complete. In order to prove NP-Hardness, we
reduce the 3CNF-SAT problem to the Minimum Tile Set
Problem.

The language we wish to decide is:
L = {(A, c, τ)/ There exists a tile system T = 〈T,S, g, τ〉

with |T | ≤ c that uniquely assembles A}
where A is a shape, c is a positive integer and p ∈ A.
Given a 3CNF-formula ϕ, we design two shapes. One is a

tree Υ(ϕ) for which we can compute the minimum tile set
efficiently; let c be the size of this minimum tile set. We
show that ϕ is satisfiable iff the second shape M(ϕ) can also
be assembled using c distinct tile-types. An interesting part
of the proof is that we rely on the polynomial time solution
of the Minimum Tile Set Problem for trees.

Assume ϕ has n clauses C1, C2, · · · , Cn and m variables
v1, v2, · · · , vm. Assume also the temperature τ = 2.

6.1 Description of the tree
Informally, the tree is an encoding of the 3CNF-formula

into a shape. There is a horizontal straight line L in the tree.
Its length will be determined later. There are 4×n×m+n
gadgets (subtrees). Each gadget is on top of a vertical pillar
attached to the horizontal line. The height of the pillar will
be determined later. For ease of exposition, we assume that
we can specify where the seed is placed. In particular, we
assume the seed is placed in L immediately to the west of
the westmost pillar. We further assume that the seed is
placed at the same position in Υ(ϕ) and in M(ϕ). It is easy
to remove these assumption; details are omitted from this
version.

Each gadget may be of one out of four possible classes.

1. STi,j , which represents that Ci is satisfied by at least
one variable vk with k < j, and vj is true;

2. UTi,j , which represents that Ci is unsatisfied by all
variables vk with k < j and vj is true;

3. SFi,j , which represents that Ci is satisfied by at least
one variable vk with k < j, and vj is false;

4. and UFi,j , which represents that Ci is unsatisfied by
all variables vk with k < j, and vj is false.

Each gadget is roughly a rectangle, with part of the south-
east corner missing. The gadget has teeth on its edges. The
teeth on the external side of the west and east edges repre-
sent whether Ci has been satisfied.

The teeth on the external side of the north and south
edges represent the value of vj . If vj appears in Ci, Ci is
unsatisfied by all variables vk for k < j and vj makes Ci

satisfied, then the gadget changes the tooth position on its
east side accordingly. Otherwise a gadget will simply pass
the information from west to east, and from south to north.

If j = 1, the west side has no teeth and we have only two
gadgets for each 1 ≤ i ≤ n: UTi,j and UFi,j . If i = 1, the
south side has no teeth. If i = n, the north side has no
teeth.

All gadgets have teeth on the internal side of west edges,
they encode a position as an (i, j) ordered pair. The gad-
get can be fit into a 13 × 2dlog nme rectangle. There are n
extra ”side gadgets.” The teeth on the external size of their
west edges represent whether Ci has been satisfied. A typ-
ical regular gadget and a typical side gadget are shown in
Figure 1, along with how the gadgets will be fit together to
transfer information.
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Regular  gadget Side gadget

How gadgets fit

Figure 1: A typical regular ST gadget and a side

gadget for the NP-hardness reduction

Each gadget attaches to a vertical line (pillar) of height
26m, the line then sits on L.

The whole tree is sketched in Figure 2.
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The tree

L

Figure 2: The sketch of a tree for the proof of NP-

hardness

6.2 Description of the second shape
Given a 3CNF-formula, M(ϕ) has Υ(ϕ) as a sub-shape.

Besides Υ(ϕ), we will have a substructure, which can be
thought as an m × n matrix of gadgets. The bottom level
of gadgets in the matrix attach to pillars of height 26m.
The pillars supporting the matrix are attached to line L.
The leftmost pillar supporting the matrix sits on a tile at
position P , while the rightmost pillar supporting the matrix
sits on tile at position Q. See Figure 3 for the sketch of the
second structure.

The position encoding parts of gadgets will be arranged
in such a way that i starts from 1 and increases by 1 in each
gadget northward until it reaches n, j starts from 1 and
increases by 1 in each gadget eastward until it reaches m.
The side gadgets are placed on the east side of the matrix.
Note that in the final assembly all teeth must be present.

The intuition behind the construction is: The tree sub-
structure Υ(ϕ) encodes the clauses of the formula ϕ. The
assembly of the matrix substructure of M(ϕ) mimics the
evaluation of ϕ. Choosing a particular set of gadgets is
equivalent to choosing a truth assignment. Building the en-
tire matrix using only gadgets is equivalent to satisfying ϕ.

6.3 The proof
The B tiles in the following lemma refer to Figure 1

Lemma 6.1. For all 3CNF-formulas ϕ, for all tile sys-
tems T = 〈T,S, g, τ〉 that uniquely assemble Υ(ϕ), let w be
the supertile assembled by T with shape Υ(ϕ). For all gad-
gets g let w1 be the sub-supertile corresponding to g. The
tile at position B in w1 is of different type from any other
tile in w.

Lemma 6.2. For all 3CNF-formulas ϕ, for all tile sys-
tems T = 〈T,S, g, τ〉 that uniquely assemble Υ(ϕ), let w be
the supertile assembled by T with shape Υ(ϕ). For all pairs
of positions (p1, p2) such that p1 and p2 are in the PQ seg-
ment and p1 6= p2, the tiles at positions p1 and p2 in w are
of different types.

Both lemmas are proved by showing the tiles involved
are part of different equivalent classes, as defined before
Lemma 4.1. The details of the proofs are omitted.

Lemmas 6.3 through 6.6 describe some relations between
the minimum number of tile-types to build Υ(ϕ) and M(ϕ).
We will use Ai,j , Bi,j etc. to refer to tile-positions A, B etc.
in the (i, j)-th gadgets.

Lemma 6.3. For all satisfiable 3CNF-formulas ϕ, if c is
the minimum possible number of tiles types to uniquely as-
semble the tree Υ(ϕ), then there exists a tile system T =
〈T,S, g, τ〉 such that |T | = c and T uniquely assembles M(ϕ).

æçæçæèçèéê ëçëìíîïðñòóôõ
õõõ
õ
ööö
öö÷÷ø
øùçùùçùúçúúçúûûüüýþÿçÿçÿ����������������������������� �	
�
���

��


������ ������
����������
������
���
������
������
���

������
������
������
������

��
��
��
�� ������������������ ���������� �  � 

 �  � 
 �  � 

!�!!�!
!�!!�!
!�!!�!"�"�"�"#�#�#�#$%&'(�()*�*+�+

,�,,�,
,�,
-�--�-
-�-./ 01
23

4�44�45�55�5 6
6
77

8�88�8
8�88�8
8�88�8
8�8

99
99
99
9

:�:�:;�;<�<= >?@�@A�AB�B
B�BC�CC�CD�DE�EF�FF�FG�GG�GH�H
H�HH�H
H�HH�H
H�H

I�II�I
I�II�I
I�II�IJ�JK�KLMNOP
P
QQR�R�RR�R�RS�S�SS�S�STTU

U
VWXY Z[\�\]�]
^�^_�_
``a
a b�bc�cd�de
f�fghh
hh
h
ii
ii
i

j�j�jk�k�klm nopqrrs
stuv�vv�vw
wx�xx�x

x�xx�x
x�xx�x

yy
yy
yyz�z{|�|}�}~��
�
����������������������������������������������������������������

��

������������ ��������
��������
��
�
��
��
�

���
��� ����������   

  
  

¡¡
¡¡
¡¡¢�¢�¢�¢£�£�£�£¤¥¦¦§§ ¨

¨
©© ª
ª
««
¬¬
¬


®¯ °°±
±²³

´´µ
µ
¶¶·
·

¸�¸¹�¹º�º»�» ¼�¼�¼½�½�½¾�¾¾�¾
¾�¾¾�¾
¾�¾¾�¾
¾�¾

¿�¿¿�¿
¿�¿¿�¿
¿�¿¿�¿
¿�¿À�À�À�À�ÀÀ�À�À�À�ÀÁ�Á�Á�ÁÁ�Á�Á�ÁÂ�ÂÂ�ÂÃ

Ã
Ä�ÄÅÆ�ÆÇ�ÇÈ�ÈÉ�É
Ê�ÊÊ�Ê
Ê�Ê
Ë�ËË�Ë
Ë�Ë
Ì�ÌÍ ÎÏ
ÐÑ

Ò�ÒÓ�Ó ÔÕ

Ö�Ö×Ø�ØØ�ØÙ
Ù
Ú�Ú�Ú�ÚÚ�Ú�Ú�ÚÛ�Û�Û�ÛÛ�Û�Û�ÛÜ�ÜÜ�Ü

Ü�ÜÜ�Ü
Ü�ÜÜ�Ü

ÝÝ
ÝÝ
ÝÝÞ�Þ�Þ�Þ�Þß�ß�ß�ß�ßà�àá�áâ�âã�ãä�äåæ�æç

è�èè�è
è�èè�è
éé
éé

ê�êë�ëì�ìí�í
î�îî�îï�ïï�ï

ð�ðñò�òó�ó

ô�ôõ�õö�ö÷�÷

ø�øù�ùú�úû�û

ü�ü�üý�ý�ýþÿ������������

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

		
		
		
	













������
������
������
���

������
������
������
���

�����������������������
��
��
��
��
�������� !�!�!"�"�"#�#$%�%&'�'( )* +, -�-.�./�/0

1�1233
33
3
44
44
4

5�567�78�89�9
9�9:�::�:;�;<�<==>
>??
??
??

@@
@@
@@ABCDEFGGHHI�I�II�I�IJ�J�JJ�J�JK�KK�KL

L
M�MNO�OP QR ST
U�UV

W�WX�XY�YZ
[�[\]]
]]
]
^^
^^
^

_�_`a�ab�bc�cd�de�ef�fghi
ii
ii
jj
jj
jklmnopqrs�s�st�t�tu�uvw�wxy�yy�yz

z
{{|
|
}}~
~����
�������������������

�
������
��
�
��
��
�

������������������������
������
������
���
��
��
�������������������������������� ¡¢£¤ ¥¦§�§¨�¨

©ª «�«¬�¬�®�®¯�¯°�°±±
±±
±
²²
²²
²
³´µ�µ¶�¶·�·¸�¸¹�¹º�º»�»¼�¼

½�½½�½
½�½½�½
½�½
¾�¾¾�¾
¾�¾¾�¾
¾�¾¿�¿À�ÀÁÂÃÄÅÆÇ�Ç�ÇÈ�È�ÈÉÊËÌÍÎ ÏÐÑ�ÑÒ�Ò

ÓÔ Õ�ÕÖ�Ö×�×Ø
Ù�ÙÚÛÛ
ÛÛ
Û
ÜÜ
ÜÜ
Ü

Ý�ÝÞ�Þ ßßààá�áá�áâ�ââ�âã�ã
ã�ãä�ää�äå�åå�åæ�ææ�æç�çç�çè
èé�éé�é

é�éé�é
é�é
êê
êê
êë�ëìí�íîï�ïð�ðñ�ñò�òó�ó�óô�ô�ôõö÷øùú ûüý�ýþ�þ

ÿ�ÿ�
�� ���������

����������
�
���	









��
��
��

��

���
��������
��������
�������

������
���
��
��
��������������� � � � !�!�!�!"�"#�#$�$%�%&�&'�'(�()�)*�*+

,-
.�./�/ 001

12�22�23�33�3
4�45�566
66
66

77
77
77

8�8�88�8�89�9�99�9�9:�:�::�:�:;�;�;;�;�;

<�<�<�<�<<�<�<�<�<=�=�=�==�=�=�=
>>?
?

@@A
A
BBC
CDDE
E
FFG
GH�HH�HI�II�I

J�JJ�J
J�JJ�J
J�JJ�J
J�JJ�J
J�JJ�J
J�JJ�J
J�J

K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KK�K
K�KL�LL�LM�MM�MNNO
O
PPQ
Q
RRS
S

T�T�T�T�T�T�TT�T�T�T�T�T�TU�U�U�U�U�U�UU�U�U�U�U�U�UV�VV�VW�WW�WX�XX�XY�YY�YZ�ZZ�Z[�[[�[\�\\�\]�]]�]^�^^�^_�__�_
`�``�`a�aa�a

b�b�bb�b�bc�c�cc�c�c
d�dd�de�ee�effg

g

hhi
i

jj
jj
jj
jj
jj
jj

kk
kk
kk
kk
kk
kk

l�l�l�ll�l�l�lm�m�m�mm�m�m�m
nno
o

ppq
q
rrs
sttu
u
vvw
wx�xx�xy
yz�zz�z

z�zz�z
z�zz�z
z�zz�z
z�zz�z
z�zz�z
z�z

{{
{{
{{
{{
{{
{{
{|�||�|}
}
~~�
�
���
�
���
�

�������������������������������������������������������
�
�������
�
�������
�
�������
�
�������
�
������������

����������������
���������������

�

���
�

������
������
������
������
������
������

������
������
������
������
������
������

���
����� � � � � � � �  � � � � � � � ¡�¡�¡�¡�¡�¡�¡�¡¡�¡�¡�¡�¡�¡�¡�¡¢�¢¢�¢

¢�¢¢�¢
¢�¢¢�¢
¢�¢¢�¢
¢�¢¢�¢
¢�¢¢�¢
¢�¢¢�¢
¢�¢¢�¢

£�££�£
£�££�£
£�££�£
£�££�£
£�££�£
£�££�£
£�££�£
£�££�£¤�¤�¤�¤�¤�¤�¤�¤�¤�¤¤�¤�¤�¤�¤�¤�¤�¤�¤�¤¤�¤�¤�¤�¤�¤�¤�¤�¤�¤

¥�¥�¥�¥�¥�¥�¥�¥�¥�¥¥�¥�¥�¥�¥�¥�¥�¥�¥�¥¥�¥�¥�¥�¥�¥�¥�¥�¥�¥
¦�¦¦�¦§�§§�§¨�¨¨�¨©�©©�© ª
ª
«« ¬
¬


®®
®®
®®
®

¯¯
¯¯
¯¯
¯

°�°�°°�°�°°�°�°
±�±�±±�±�±±�±�± ²�²²�²

²�²
³�³³�³
³�³´�´
´�´µ�µµ�µ

¶¶·
·
¸�¸¸�¸¹�¹¹�¹

ºº»
»¼¼½½¾�¾�¾�¾�¾�¾�¾�¾¾�¾�¾�¾�¾�¾�¾�¾¿�¿�¿�¿�¿�¿�¿�¿¿�¿�¿�¿�¿�¿�¿�¿À�ÀÀ�À

À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À

ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁÂ�Â�Â�Â�Â�Â�Â�Â�Â�ÂÂ�Â�Â�Â�Â�Â�Â�Â�Â�ÂÂ�Â�Â�Â�Â�Â�Â�Â�Â�Â

Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�ÃÃ�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�ÃÃ�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã
Ä�ÄÄ�ÄÅ�ÅÅ�ÅÆ�ÆÆ�ÆÇ�ÇÇ�Ç È
È
ÉÉ Ê
Ê
ËË

ÌÌ
ÌÌ
ÌÌ
Ì

ÍÍ
ÍÍ
ÍÍ
Í

Î�Î�ÎÎ�Î�ÎÏ�Ï�ÏÏ�Ï�Ï Ð�ÐÐ�ÐÑ�ÑÑ�Ñ
Ò�ÒÒ�ÒÓ�ÓÓ�Ó

ÔÔÕ
Õ
Ö�ÖÖ�Ö×�××�×

ØØ
Ø
ÙÙ
ÙÚÚÛÛÜ�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�ÜÝ�Ý�Ý�Ý�Ý�Ý�ÝÝ�Ý�Ý�Ý�Ý�Ý�ÝÞ�ÞÞ�Þ

Þ�ÞÞ�Þ
Þ�ÞÞ�Þ
Þ�ÞÞ�Þ
Þ�ÞÞ�Þ
Þ�ÞÞ�Þ
Þ�ÞÞ�Þ
Þ�Þ

ß�ßß�ß
ß�ßß�ß
ß�ßß�ß
ß�ßß�ß
ß�ßß�ß
ß�ßß�ß
ß�ßß�ß
ß�ßà�à�à�à�à�à�à�à�à�àà�à�à�à�à�à�à�à�à�àá�á�á�á�á�á�á�á�áá�á�á�á�á�á�á�á�á

â�ââ�âã
ã
ä�ää�äå
å
ææç
ç
èèé
é

êê
êê
êê
ê

ëë
ëë
ëë
ë

ì�ì�ìì�ì�ìí�íí�í î�î
î�îïï
ð�ðð�ðñ
ñ

òòó
ó
ô�ôô�ôõ
õ

ö�ö�ö�öö�ö�ö�öö�ö�ö�ö
÷�÷�÷�÷÷�÷�÷�÷÷�÷�÷�÷

øøù
ù

ú�ú�ú�úú�ú�ú�úû�û�û�ûû�û�û�û
üüý
ý

þ�þ�þ�þ�þþ�þ�þ�þ�þþ�þ�þ�þ�þ
ÿ�ÿ�ÿ�ÿ�ÿÿ�ÿ�ÿ�ÿ�ÿÿ�ÿ�ÿ�ÿ�ÿ

���
����������������������������

���������������������
���
�

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

		
		
		
		
		
		
		
		
		





























��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
�

������������
������
���
������
���
������������
������
���
������
���������
������
������
������
������
������
���

������
������
������
������
������
������
������
����������� 
 
!!"
"
##$
$

%�%�%�%�%�%%�%�%�%�%�%&�&�&�&�&�&&�&�&�&�&�&'�''�'(�((�()�))�)*�**�*+�++�+,�,,�, -
-
.. /
/
00

1�1�11�1�11�1�1
2�2�22�2�22�2�2

33
3
44
4

55
5
66
6

7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7

88
88
88
88
88
88

99:
:

;�;;�;<�<<�<
=�==�=>�>>�>?�??�?@�@@�@A�AA�AB�BB�B
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�CC�C
C�C

D�DD�D
D�DD�D
D�DD�D
D�DD�D
D�DD�D
D�DD�D
D�DE�E
E�EF�FF�FGGH
H
IIJ
J
KKL
L

M�M�M�M�M�MM�M�M�M�M�MN�N�N�N�N�NN�N�N�N�N�NO�OO�OP�PP�PQ�QQ�QR�RR�RS�SS�ST�TT�T U
U
VV W
W
XX
Y�YY�YZ
Z

[�[�[[�[�[\�\�\\�\�\]]^
^

__`
`

a�aa�a
a�aa�a
a�aa�a
a�aa�a
a�aa�a
a�aa�a

bb
bb
bb
bb
bb
bb

ccd
d

e�ee�ef�ff�f
g�gg�gh�hh�hi�ii�ij�jj�j
k�kk�kl�ll�l
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�mm�m
m�m

n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�nn�n
n�no�o
o�op�pp�pqqr
r
sst
t
uuv
v

w�w�w�w�w�ww�w�w�w�w�wx�x�x�x�x�xx�x�x�x�x�xy�yy�yz�zz�z{�{{�{|�||�|}�}}�}~�~~�~ �
�
�� �
�
��
�������
�

�����������������������
�

���
�

������
������
������
������
������
������

��
��
��
��
��
��

�������
�

�������
����

��������
�

�������
�������

���
��
�������

������
������
������
������
������
���

��
��
��
��
��
��
����

��������
�
���
�
�� 
 

¡�¡�¡�¡�¡�¡¡�¡�¡�¡�¡�¡¢�¢�¢�¢�¢�¢¢�¢�¢�¢�¢�¢££¤
¤
¥¥¦
¦
§§¨
¨
©©ª
ª
««¬
¬

��®�®®�®
¯�¯�¯¯�¯�¯¯�¯�¯
°�°°�°
°�°

±±
±
²²
²

³³
³
´´
´

µ�µµ�µ
µ�µµ�µ
µ�µµ�µ
µ�µµ�µ
µ�µµ�µ
µ�µµ�µ

¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶

··¸
¸
¹¹º
º»»
»¼¼
¼

½½¾
¾¿�¿¿�¿

¿�¿
À�ÀÀ�À
À�ÀÁ�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�Á

Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÃ�Ã
Ã�ÃÄ�ÄÄ�ÄÅÅÆ
Æ
ÇÇÈ
È
ÉÉÊ
Ê

Ë�Ë�Ë�Ë�Ë�Ë�ËË�Ë�Ë�Ë�Ë�Ë�ËÌ�Ì�Ì�Ì�Ì�Ì�ÌÌ�Ì�Ì�Ì�Ì�Ì�ÌÍ�ÍÍ�ÍÎ�ÎÎ�ÎÏ�ÏÏ�ÏÐ�ÐÐ�ÐÑ�ÑÑ�ÑÒ�ÒÒ�ÒÓ�ÓÓ�ÓÔ�ÔÔ�ÔÕ�ÕÕ�ÕÖ�ÖÖ�Ö

×�×�××�×�×Ø�Ø�ØØ�Ø�Ø
Ù�ÙÙ�Ù
Ù�Ù
Ú�ÚÚ�Ú
Ú�Ú

ÛÛ
Û
ÜÜ
Ü

ÝÝ
Ý
ÞÞ
Þ

ßß
ßß
ßß
ßß
ßß
ßß

àà
àà
àà
àà
àà
àà

á�á�á�áá�á�á�áâ�â�â�ââ�â�â�â
ã�ãã�ãä�ää�äå�åå�åæ�ææ�æ
ç�çç�ç
ç�ç
è�èè�è
è�è
é�éé�éê�êê�êë�ëë�ë
ë�ë
ì�ìì�ì
ì�ìí�íí�í
í�íí�í
í�íí�í
í�íí�í
í�íí�í
í�íí�í
í�í

î�îî�î
î�îî�î
î�îî�î
î�îî�î
î�îî�î
î�îî�î
î�îï�ï
ï�ïï�ïð�ðð�ð
ð�ð
ññ
ñ
òò
ò
óó
ó
ôô
ô
õõö
ö

÷�÷�÷�÷�÷�÷�÷÷�÷�÷�÷�÷�÷�÷ø�ø�ø�ø�ø�ø�øø�ø�ø�ø�ø�ø�øù�ùù�ùú�úú�úû�ûû�ûü�üü�üý�ýý�ýþ�þþ�þÿ�ÿÿ�ÿ������ �
�
��
������
���
��
�

��������������������
���������������
	�	�		�	�		�	�	






��
�

��
�



������
������
������
������
������
������

��
��
��
��
��
��

���
�
���
���
���
�

���
�������

���
��
�������

������
������
������
������
������
���

��
��
��
��
��
��
����

��������
�
��
�
��
�
  
 
!!
!
""#
#

$�$�$�$�$�$�$$�$�$�$�$�$�$%�%�%�%�%�%%�%�%�%�%�%&�&&�&'
'
(�((�()
)
*�**�*+
+
,�,,�,-
-
.�..�./
/
0�00�0
0�0
1�11�1
1�1

2�2�22�2�23�33�3
4�44�4
4�4
5�55�5
5�5

66
6
77
7

88
8
99
9

:�::�:
:�::�:
:�::�:
:�::�:
:�::�:
:�::�:

;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;
;�;;�;

<�<�<�<<�<�<�<<�<�<�<
=�=�=�==�=�=�==�=�=�=

>�>�>�>�>>�>�>�>�>>�>�>�>�>
?�?�?�??�?�?�??�?�?�?

The Rectangle substructure.

Seed tile QP

The second shape

L

i

(C
la

us
es

)

j (Variables)

Figure 3: A sketch of the second structure used in

the NP-hardness proof

Proof Sketch: Assume we know a satisfying assignment
and we know the tile system T = 〈T,S, g, τ〉 to build Υ(ϕ).
It is possible to modify some glues in the tile-types in T to
define a tile system T′ that uniquely assembles M(ϕ).

From lemma 6.1, B tiles are unique. We could derive an
analogous lemma for C tiles, so we also know C tiles are
unique. We can arrange the glues on east side of Bi,j and
north side of Ai+1,j , correspondingly the west and south side
of Ci,j+1, to provide enough strength for the proper gadget
of index i, j + 1 to grow. Similarly, by Lemma 6.2 the tiles
in segment PQ are unique, we can change the glue on the
north side of the tiles without increasing the size of the tile
set.

Lemma 6.4. For all 3CNF-formulas ϕ, for all T = 〈T,S, g, τ〉
with |T | ≤ c that uniquely assembles M(ϕ), if c is the mini-
mum possible number of tiles types to uniquely build the tree
Υ(ϕ), all pairs of adjacent tiles in the PQ segment in the
supertile produced by T, are connected by strength-2 bonds.

Proof Sketch: Assume there is at least one strength-1
bond between adjacent tiles in PQ or two adjacent tiles in
PQ are not bonded. L can be assembled only if at least one
of the pillars supporting the matrix grows southward. The
tiles used to construct a pillar growing southward cannot
be of the same type of tiles using pillars growing upwards.
If we tried to reuse tile-types as suggested in the previous
sentence it would be possible to construct supertiles that do
not have the shape M(ϕ). The pillars are taller than 2|PQ|,



and we would have to introduce that many new tile-types to
uniquely build M(ϕ). The savings obtained by using tiles
of the same type cannot outweigh the cost of building a
pillar southward. The number of tile-types needed to build
the substructure to the west of P and to the east of Q is
independent of how we build PQ. The tile system would
have more than c tiles.

Lemma 6.5. For all 3CNF-formulas ϕ, if c is the mini-
mum possible number of tiles types to uniquely build the tree
Υ(ϕ), then there is no tile system with less than c tile-types
that uniquely assembles M(ϕ). Further, given a tile system
that uniquely assembles M(ϕ) with c tile-types, it is possible
to create a tile system of minimum size that uniquely as-
sembles Υ(ϕ) by modifying only the north glues of tile-types
used to build the PQ segment.

Proof Sketch: Assume there is a tile system T = 〈T,S, g, τ〉
with |T | ≤ c that uniquely assembles M(ϕ) and |T | < c.
Note that no tile of the same type as one used to build the
PQ segment may appear in the terminal supertile except
in the PQ segment. If this were possible, T would assem-
ble something other than M(ϕ). Consider the tile system
T′ = 〈T ′,S, g, τ〉 created by modifying the tile-types used
to build the PQ segment. The modification is removing the
glue on the north side of these tile-types. T′ assembles Υ(ϕ),
the removal of north glues prevents assembling the matrix
and its supporting pillars. By Lemma 6.4, all consecutive
tiles in the PQ segment are connected by strength-2 bonds
so the removal of north glues cannot prevent the growth of
the PQ segment. The construction of the substructures to
the to the west of P and to the east of Q is not affected.

T′ then uniquely assembles Υ(ϕ), but |T ′| < c.
Lemma 6.3 tell us that if ϕ is satisfiable then there exist

a tile system of size c that uniquely assembles M(ϕ), while
Lemma 6.5 says that there is no tile system smaller than c
to uniquely assembles M(ϕ). Now we have to consider the
case when ϕ is unsatisfiable:

Lemma 6.6. For all 3CNF-formulas ϕ, for all tile sys-
tems T = 〈T,S, g, τ〉, if c is the minimum possible number
of tiles types to uniquely build the tree Υ(ϕ) and T uniquely
assembles M(ϕ) and |T | = c then ϕ is satisfiable.

Proof Sketch: First we observe that all pillars support-
ing the matrix of M(ϕ) must grow northward. The choice
of glues to start the pillar growth represents a truth as-
signment to variables. We also observe that the matrix is
built out gadgets. This means position (i, j) in the matrix
is guaranteed to be built by a replica of a gadget with an
(i, j) identifier. Uniqueness of assembly implies that the or-
der used to add tiles is irrelevant wrt. the terminal supertile
produced. We note that the matrix can be built from row
1 to row n. Further each row can be assembled from west
to east. If the matrix is built in that order it is easy to see
that if row k can be built then clause Ck is satisfied by the
truth assignment. If the entire matrix can be built then all
clauses can be satisfied by a single truth assignment.

As a corollary, if ϕ is unsatisfiable, we need more than
c tile-types to uniquely assemble M(ϕ). From Lemmas 6.3
and 6.6 we trivially prove a theorem that implies the Mini-
mum Tile Set Problem is NP-hard.

Theorem 6.7. For all 3CNF-formulas ϕ, if c is the min-
imum possible number of tiles types to uniquely build the
tree Υ(ϕ) then ϕ is satisfiable iff there exists a tile system
T = 〈T,S, g, τ〉 such that |T | = c and T uniquely assembles
M(ϕ).

7. OPEN PROBLEMS

1. Algorithm Unique-Shape in Section 3 assumes the strength
of every bond is nonnegative. If the assumption does
not hold, we do not know if it is possible to do the
verification in polynomial time.

2. The algorithm to solve the Minimum Tile Set Problem
for squares presented in Section 4, assumes the tem-
perature is a constant. If we let the temperature be
function of the size of the square, it is not clear if we
can solve the problem by enumeration of tile systems
in polynomial time.

3. As we proved, the Minimum Tile Set Problem is NP-
hard in general, but for some families of shapes can be
solved in polynomial time. In this paper we presented
algorithms for trees and squares and ”thick rectan-
gles.” We would like to know if we can solve the prob-
lem for other families of shapes such as thin rectangles
or shapes without holes. Another interesting family
could be the set of all shapes that are convex wrt.
horizontal and vertical lines.

4. Our conjecture about the #P-hardness of the Optimal
Concentrations problem has to be proved.
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