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Stability and Robustness in Influence Maximization

XINRAN HE, University of Southern California
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In the well-studied Influence Maximization problem, the goal is to identify a set of k nodes in a social network

whose joint influence on the network is maximized. A large body of recent work has justified research on

Influence Maximization models and algorithms with their potential to create societal or economic value.

However, in order to live up to this potential, the algorithms must be robust to large amounts of noise, for

they require quantitative estimates of the influence which individuals exert on each other; ground truth for

such quantities is inaccessible, and even decent estimates are very difficult to obtain.

We begin to address this concern formally. First, we exhibit simple inputs on which even very small estima-

tion errors may mislead every algorithm into highly suboptimal solutions. Motivated by this observation, we

propose the Perturbation Interval Model as a framework to characterize the stability of Influence Maximization

against noise in the inferred diffusion network. Analyzing the susceptibility of specific instances to estimation

errors leads to a clean algorithmic question, which we term the Influence Difference Maximization problem.

However, the objective function of Influence Difference Maximization is NP-hard to approximate within a

factor of O(n1−ϵ ) for any ϵ > 0.

Given the infeasibility of diagnosing instability algorithmically, we focus on finding influential users

robustly across multiple diffusion settings. We define a Robust Influence Maximization framework wherein an

algorithm is presented with a set of influence functions. The algorithm’s goal is to identify a set of k nodes

who are simultaneously influential for all influence functions, compared to the (function-specific) optimum

solutions. We show strong approximation hardness results for this problem unless the algorithm gets to select

at least a logarithmic factor more seeds than the optimum solution. However, when enough extra seeds may

be selected, we show that techniques of Krause et al. can be used to approximate the optimum robust influence

to within a factor of 1 − 1/e . We evaluate this bicriteria approximation algorithm against natural heuristics

on several real-world data sets. Our experiments indicate that the worst-case hardness does not necessarily

translate into bad performance on real-world data sets; all algorithms perform fairly well.
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1 INTRODUCTION
Computational social science is the study of social and economic phenomena based on electronic

data, algorithmic approaches and computational models. It has emerged as an important application
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of data mining and learning, while also invigorating research in the social sciences. Computational

social science is frequently envisioned as a foundation for a discipline one could term “computational

social engineering,” wherein algorithmic approaches are used to change or mitigate individuals’

behavior.

Among the many concrete problems that have been studied in this context, perhaps the most

popular is Influence Maximization. It is based on the observation that behavioral change in individ-

uals is frequently effected by influence from their social contacts. Thus, by identifying a small set

of “seed nodes,” one may influence a large fraction of the social network. The desired behavior may

be of social value, such as refraining from smoking or drug use, using superior crops, or following

hygienic practices. Alternatively, the behavior may provide financial value, as in the case of viral

marketing, where a company wants to rely on word-of-mouth recommendations to increase the

sale of its products.

1.1 Prevalence of Uncertainty and Noise
Contrary to the “hard” sciences, the study of social networks — whether using traditional or

computational approaches — suffers from massive amounts of noise inherent in the data and

models. The reasons range from the fundamental to the practical:

• At a fundamental level, it is not even clear what a “social tie” is. Different individuals or

researchers operationalize the intuition behind “friendship”, “acquaintance”, “regular” advice

seeking, etc. in different ways (see, e.g., [10]). Based on different definitions, the same real-

world individuals and behavior may give rise to different mathematical models of the same

“social network.”

• Mathematical models of processes on social networks (such as opinion adoption or tie forma-

tion) are at best approximations of reality, and frequently mere guesses or mathematically

convenient inventions. Furthermore, the models are rarely validated against real-world data,

in large part due to some of the following concerns.

• Human behavior is typically influenced by many environmental variables, many of them hard

or impossible to measure. Even with the rapid growth of available social data, it is unlikely

that data sets will become sufficiently rich to disentangle the dependence of human behavior

on the myriad variables that may shape it.

• Observational data on social behavior is virtually always incomplete. For example, even if

API restrictions and privacy were not concerns (which they definitely are at this time) and a

“complete” data set of Twitter and Facebook and e-mail communication were collected, it

would still lack in-person and phone interactions.

• The process of inferring model parameters relies on a choice of model and hyperparameters,

many of which are difficult tomake. Furthermore, while for manymodels, parameter inference

is computationally efficient, this is not universally the case.

1.2 Dealing with Uncertainty
Since none of these issues are likely to be resolved anytime soon, both the models for social network

processes and their inferred parameters must be treated with caution. This is true both when one

wants to draw scientific insight for its own sake, and when one wants to use the inferred models to

make computational social engineering decisions. Indeed, the correctness guarantees for algorithms

are predicated on the assumption of correctness of the model and the inferred parameters. When

this assumption fails — which is inevitable — the utility of the algorithms’ output is compromised.

Thus, to make good on the claims of real-world relevance of computational social science, it is

imperative that the research community focus on robustness as a primary design goal. Recently, Yadav
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et al. [54] carried out a field study to test the performance of Influence Maximization algorithms

in real-world homeless-youth social networks. They showed that the performance of Influence

Maximization algorithms differs significantly across mathematical diffusion models and complex

real-world diffusion phenomena.

In this article, we study the Influence Maximization problem in the presence of noise and

uncertainty about the diffusion models and data. To be more specific, we are guided by the following

three overarching questions:

(1) How do the noise and uncertainty impact the performance of Influence Maximization algo-

rithms?

(2) How can we diagnose the instability algorithmically?

(3) How can we design Influence Maximization algorithms that are robust to noise and uncer-

tainty?

First, we exhibit simple inputs on which even very small estimation errors may mislead every

algorithm into highly suboptimal solutions. To quantify the impact of noise and uncertainty on

Influence Maximization algorithms, we propose (in Section 4) the Perturbation Interval Model

as a framework to characterize and measure the stability of Influence Maximization approaches

in the presence of noise. We empirically examine the impact of noise on Influence Maximization

algorithms under multiple real-world social networks with different diffusion models and settings.

To diagnose the instability of a specific Influence Maximization instance, we formulate and analyze

(in Section 5) a clean algorithmic question which we term the Influence Difference Maximization

problem. A theoretical analysis of the problem shows that the objective function of Influence

Difference Maximization is NP-hard to approximate to within a factor of O(n1−ϵ ) for any ϵ > 0.

Given the infeasibility of diagnosing instability algorithmically, we instead focus on answering

question (3): designing Influence Maximization algorithms that are robust to noise and uncertainty.

We define (in Section 6) a Robust Influence Maximization framework wherein an algorithm is

presented with a set of influence functions, typically derived from different influence models or

different parameter settings for the same model. The different parameter settings could be derived

from observed cascades on different topics, under different conditions, or at different times. The

algorithm’s goal is to identify a set of k nodes who are simultaneously influential for all influence

functions, compared to the (function-specific) optimum solutions.

We show strong approximation hardness results for this problem unless the algorithm gets to

select at least a logarithmic factor more seeds than the optimum solution. However, when enough

extra seeds may be selected, we show that techniques of Krause et al. can be used to approximate

the optimum robust influence to within a factor of 1−1/e . We evaluate this bicriteria approximation

algorithm against natural heuristics on several real-world data sets. Our experiments indicate that

the worst-case hardness does not necessarily translate into bad performance on real-world data

sets; all algorithms perform fairly well.

2 RELATEDWORK
Based on the early work of Domingos and Richardson [18], Kempe et al. [34] formally defined the

problem of finding a set of influential individuals as a discrete optimization problem, proposing a

greedy algorithm with a 1 − 1/e approximation guarantee for the Independent Cascade [22, 23]

and Linear Threshold [30] models. A long sequence of subsequent work focused on more efficient

algorithms for Influence Maximization (both with and without approximation guarantees) and on

broadening the class of models for which guarantees can be obtained [8, 14, 34, 36, 43, 50, 51, 53].

See the book by Chen et al. [12] and the survey in [34] for more detailed overviews.
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As a precursor to maximizing influence, one needs to infer the influence function σ from

observed data. The most common approach is to estimate the parameters of a particular diffusion

model [1, 24, 25, 27, 45, 47, 48]. Theoretical bounds on the required sample complexity for many

diffusion models have been established, including [1, 45, 47] for the Discrete-Time Independent

Cascade (DIC) model, [27] for the Continuous-Time Independent Cascade (CIC) model, and [45]

for the Linear Threshold model. However, it remains difficult to decide which diffusion models

fit the observation best. Moreover, the diffusion models only serve as a rough approximation to

the real-world diffusion process. In order to sidestep the issue of diffusion models, Du et al. [19]

proposed to directly learn the influence function σ from the observations, without assuming any

particular diffusion model. They only assume that the influence function is a weighted average of

coverage functions. While their approach provides polynomial sample complexity, they require a

strong technical condition on finding an accurate approximation to the reachability distribution.

Hence, their work remains orthogonal to the issue of Robust Influence Maximization.

Several papers take first steps toward Influence Maximization under uncertainty. Goyal, Bonchi

and Lakshmanan [29] and Adiga et al. [2] study random (rather than adversarial) noise models,

in which either the edge activation probabilities θu,v are perturbed with random noise [29], or

the presence/absence of edges is flipped with a known probability [2]. Neither of the models

truly extends the underlying diffusion models, as the uncertainty can simply be absorbed into the

probabilistic activation process. A detailed reduction is discussed in Section 4.2.

Another approach to dealing with uncertainty is to carry out multiple influence campaigns, and

to use the observations to obtain better estimates of the model parameters. Chen et al. [15] model

the problem as a combinatorial multi-armed bandit problem and use the UCB1 algorithmwith regret

bounds. Lei et al. [38] instead incorporate beta distribution priors over the activation probabilities

into the DIC model. They propose several strategies to update the posterior distributions and give

heuristics for seed selection in each trial so as to balance exploration and exploitation. Our approach

is complementary: the study of stability tries to answer the question whether explorations are

necessary to achieve good performance. Even in an exploration-based setting, there will always be

residual uncertainty to be handled via robust algorithms, in particular when exploration budgets

are limited.

A more general line of recent research focuses on the problem of learning and optimizing

submodular functions (and beyond) under noise and uncertainty [5, 6, 11, 31]. Balkanski et al. study

submodular function maximization from samples. They show that there is no algorithm that

maximizes a general submodular function from only a polynomial number of samples [6, 31]. In a

subsequent paper, they showed that submodular functions with bounded curvature can be optimized

from samples and propose an optimal algorithm in terms of its approximation guarantee [5].

However, the submodular objective functions of Influence Maximization do not have bounded

curvature. Recently, Balkanski, Immorlica and Singer [4] show that constant-factor approximation

algorithms can be obtained for maximizing influence functions from samples under the Independent

Cascade model when the network follows a Stochastic Blockmodel. Themain idea of their algorithm

is to utilize the community structure of the social network. In addition to estimating the first-order

marginal contribution of a node, they estimate the second-order marginal contribution to estimate

the overlap in influence. The goal is to avoid selecting two nodes in the same community. Their

approximation guarantee depends on strong assumptions about the network structure. Moreover,

they assume a model in which an oracle will provide the exact value of the influence function

without noise. Chen et al. study the general question of non-convex function optimization under

uncertainty in a mini-max sense very similar to our setting [11]. We discuss the relation with their

work in the next paragraph.
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Chen et al. [13] and Lowalekar et al. [42] study the Robust Influence Maximization problem

under the Perturbation Interval model which we introduce in the Section 4. The main result of

Chen et al. [13] is an analysis of the heuristic of choosing the best solution among three candidates:

make each edge’s parameter as small as possible, as large as possible, or equal to the middle of its

interval. They prove solution-dependent approximation guarantees for this heuristic.

The objective of Lowalekar et al. [42] is to minimize the maximum regret, i.e., the difference

between the inferred influence function and the true one, instead of maximizing the minimum

ratio between the inferred influence function and the true one. They propose a heuristic based on

constraint generation ideas to solve the Robust Influence Maximization problem. The basic idea

of the algorithm is to iterate between the following two steps. The first step finds the influence

function with maximum regret and adds it to the set of possible influence functions Σ; the second
step finds a set of seeds that maximizes influence robustly among all influence functions in Σ. Both
steps are solved via mixed-integer programming, and the algorithm terminates when the maximum

regret in the first step is smaller than a predefined threshold. The heuristic does not come with

approximation guarantees; instead, [42] proposes a solution-dependent measure of robustness of a

given seed set. As part of their work, [42] prove a result similar to our Lemma 6.2, showing that

the worst-case instances all have the largest or smallest possible values for all parameters.

Chen et al. [11] study the general problem of robustly optimizing for a set of non-convex functions

in the mini-max sense; hence, Robust Influence Maximization is a special case. They propose an

algorithm which reduces robust optimization to a Bayesian optimization problem with an iterative

weighting scheme of all the objective functions, an approach that has some similarities to the

constraint generation approach of Lowalekar et al. [42]. A priori, their algorithm generates a

distribution over many solutions; the robust approximation guarantee is for the expectation over

the returned distribution. By sampling a logarithmic number of solutions and taking their union,

their algorithm also implies a similar bicriteria result to ours. Although the work of Chen et al. [11]

and our algorithm achieve similar approximation guarantee, the two algorithms take quite different

algorithmic approaches.

3 PRELIMINARIES
The social network is modeled by a directed graph G = (V ,E) on n nodes. All parameters for

non-existing edges are assumed to be 0. We first describe models of influence diffusion, and then

formally define the problem of Influence Maximization.

3.1 Influence Diffusion Models
For concreteness, we focus on three diffusion models: the discrete-time Independent Cascade

model (DIC) [34], the discrete-time Linear Threshold model (DLT) [34] and the continuous-time

Independent Cascade model (CIC) [25]. Our framework can be generalized to most other diffusion

models as well. While our hardness results are limited to Independent Cascade models (DIC and

CIC) and a generalization to the Linear Threshold model is not immediate, our Robust Influence

Maximization algorithm works for any diffusion model whose influence function is submodular.

Under all three models, nodes are either active or inactive. The set of active nodes at time t is
denoted by At . Active nodes can influence other nodes and thereby cause them to become active,

too.

Under the DIC model, the diffusion process unfolds in discrete time steps as follows: when a

node u becomes active in step t , it attempts to activate all currently inactive neighbors in step t + 1.
For each neighbor v , it succeeds with a known probability θu,v ; the θu,v are the parameters of the

model. If node u succeeds, v becomes active. Once u has made all its attempts, it does not get to
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make further activation attempts at later times; of course, the node v may well be activated at time

t + 1 or later by some node other than u.
Under the DLT model, each node v has a threshold ηv drawn independently and uniformly from

the interval [0, 1]. The diffusion under the DLT model unfolds in discrete time steps: A node v
becomes active at step t if the total incoming weight from its active neighbors exceeds its threshold:∑
u ∈N (v)∩At−1 θu,v ≥ ηv where the weight θu,v is the influence strength parameter associated with

edge e = (u,v).
Different from the DIC and DLT models, the CIC model describes a continuous-time process.

Associated with each edge (u,v) is a delay distribution with parameter θu,v . When a nodeu becomes

newly active at time tu , for every neighbor v that is still inactive, a delay time du,v is drawn from

the delay distribution. du,v is the duration it takes u to activate v , which could be infinite (if u
does not succeed in activating v). Commonly assumed delay distributions include the Exponential

distribution or Rayleigh distribution. If multiple nodes u1, . . . ,uℓ attempt to activate v , then v is

activated at the earliest time mini tui + dui ,v . Nodes are considered activated by the process if they

are activated within a specified observation window [0,Ts ].

3.2 Influence Maximization Problem
A specific instance of an Influence Maximization problem is described by the class of its influence

model (such as DIC, DLT, CIC, or others not discussed here in detail) and the setting of the model’s

parameters; the parameters are the influence probabilities under the DIC model, the edge weights

under the DLT model, and the parameters of the edge delay distributions under the CIC model,

respectively. Together, they completely specify the dynamic process; and thus a mapping σ from

initially active sets S to the expected number
1 σ (S) of nodes active at the end of the process.

The function σ (S) is referred to as the Influence Function. We can now formalize the Influence

Maximization problem as follows:

Definition 3.1 (Influence Maximization). Maximize the objective σ (S) subject to the constraint

|S | ≤ k .

ALGORITHM 1: Hill-Climbing Greedy Algorithm

1: Initialize: S0 ← ∅
2: for i = 1, . . . ,k do
3: Let u be the element maximizing the marginal gain σ (Si−1 ∪ {u}) − σ (Si−1).
4: Let Si ← Si−1 ∪ {u}.
5: end for
6: Return Sk

For most of the diffusion models studied in the literature, including all three models studied in this

paper, it has been shown that σ (S) is a monotone and submodular
2
function of S . These properties

imply that a hill-climbing greedy approximation algorithm shown in Algorithm 1 guarantees a

1 − 1/e approximation [46].

1
The model and virtually all results in the literature extend straightforwardly when the individual nodes are assigned

non-negative importance scores.

2
Recall that a set function f is monotone iff f (S ) ≤ f (T ) whenever S ⊆ T , and is submodular iff f (S ∪ {x }) − f (S ) ≥
f (T ∪ {x }) − f (T ) whenever S ⊆ T .
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4 MODELING UNCERTAINTY IN INFLUENCE MAXIMIZATION
The concerns discussed in Section 1.1 combine to lead to significant uncertainty about the function

σ : different models give rise to very different functional forms of σ , and missing observations or

approximations in inference lead to uncertainty about the models’ parameters.

To model this uncertainty, we assume that the algorithm is presented with a set Σ of influence

functions, and assured that one of these functions actually describes the influence process, but

not told which one. The set Σ could be finite or infinite. A finite Σ could result from a finite set

of different information diffusion models that are being considered, or from a finite number of

different contexts under which the individuals were observed (e.g., multiple topic-specific networks

inferred from cascades on different topics), or from a finite number of different inference algorithms

or algorithm settings being used to infer the model parameters from observations.

4.1 Perturbation Interval model
A particularly natural way of deriving a set Σ of influence functions arises when each model

parameter is only known to lie within some given interval. For each of the edges (u,v), we are
given an interval Iu,v = [ℓu,v , ru,v ] ⊆ [0, 1] with θu,v ∈ Iu,v . For the DLT model, to ensure that

the resulting influence functions are always submodular, we require that

∑
u ∈N (v) θu,v ≤ 1 for all

nodes v . We write Θ = ×(u,v)∈E Iu,v for the set of all allowable parameter settings. It is guaranteed

that the ground truth parameter values satisfy θ ′ ∈ Θ; subject to this requirement, the ground

truth parameters can be chosen arbitrarily; in particular, this includes choosing them adversarially.

We term this model the Perturbation Interval Model or in short PIM.

For a fixed diffusion model such as DIC or DLT, the parameter values θ determine an instance of

the Influence Maximization problem. We will usually be explicit about indicating the dependence

of the objective function on the parameter settings. We write σθ for the objective function obtained

with parameter values θ , and only omit the parameters when they are clear from the context.

Therefore, under the PIM, Σ = {σθ |θ ∈ Θ}; in particular, the set Σ is uncountable. For a given

setting of parameters θ , we will denote by S∗σθ ∈ argmaxSσθ (S) a solution maximizing the expected

influence.

4.2 Stochastic vs. Adversarial Models
The classic InfluenceMaximization problem assumes that Σ contains only the true influence function

to be optimized. Under uncertainty, there is more than one candidate in the set Σ. In this work,

we assume an adversarial model. That is, the ground truth function to be optimized is chosen

by an adversary from the set Σ. The process of influence maximization under uncertainty can be

considered as a two-player game. The first player observes the candidate set Σ and picks a seed set

S , trying to maximize the influence. Then, the second player picks an influence function σ from Σ to

minimize the algorithm’s performance. The algorithm’s performance is (in our work) typically the

ratio between the influence σ (S) of the selected seed set and the influence σ (S∗σ ) of the optimal seed

set S∗σ under the chosen function σ . Given its prominent role in our model, the decision to treat the

choice of influence function as adversarial rather than stochastic deserves some discussion.

First, adversarial guarantees are stronger than stochastic guarantees, and will lead to more robust

solutions in practice. Perhaps more importantly, inferring a Bayesian prior over influence functions

in Σ will run into exactly the type of problem we are trying to address in the first place: data are

sparse and noisy, and if we infer an incorrect prior, it may lead to very suboptimal results. Doing

so would next require us to establish robustness over the values of the hyperparameters of the

Bayesian prior over functions.
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Specifically for the Perturbation Interval model, one may be tempted to treat the parameters

as drawn according to some distribution over their possible range. This approach was essentially

taken in [2, 29]. Goyal et al. [29] assume that for each edge (u,v), the value of θu,v is perturbed

with uniformly random noise from a known interval. Adiga et al. [2] assume that each edge (u,v)
that was observed to be present is actually absent with some probability ϵ , while each edge that

was not observed is actually present with probability ϵ ; in other words, each edge’s presence is

independently flipped with probability ϵ .
The standard Independent Cascade model subsumes both models straightforwardly. Suppose

that a decision is to be made about whether u activates v . In the model of Goyal et al., we can first

draw the actual (perturbed) value of θ ′u,v from its known distribution; subsequently, u activates v

with probability θ ′u,v ; in total, u activates v with probability E
[
θ ′u,v

]
. Thus, we obtain an instance

of the IC model in which all edge probabilities θu,v are replaced by E
[
θ ′u,v

]
. In the special case

when the noise has mean 0, this expectation is exactly equal to θu,v , which explains why Goyal et

al. observed the noise to not affect the outcome at all.

In the model of Adiga et al., we first determine whether the edge is actually present; when it was

observed present, this happens with probability 1 − ϵ ; otherwise with probability ϵ . Subsequently,
the activation succeeds with probability p. ([2] assumed uniform probabilities.) Thus, the model is

an instance of the IC model in which the activation probabilities on all observed edges are p(1 − ϵ),
while those on unobserved edges are pϵ . This reduction explains the theoretical results obtained by

Adiga et al.

More fundamentally, practically all “natural” random processes that independently affect edges

of the graph can be “absorbed into” the activation probabilities themselves; as a result, random

noise does not at all play the result of actual noise.

Tomodel the type of issues one would expect to arise in real-world settings, at the very least, noise

must be correlated between edges. For instance, certain subpopulations may be inherently harder

to observe or have sparser data to learn from. In the extreme case, certain subpopulations may

not be observable at all due to their online privacy settings or offline evasive behavior. Correlated

random noise would result in a more complex description of the noise model, and thus make it

harder to actually learn and verify the noise model. In particular, as discussed above, this would

apply given that the noise model itself must be learned from noisy data.

5 STABILITY OF INFLUENCE MAXIMIZATION
In this section, we focus on answering the first two questions introduced in Section 1.2: understand-

ing the impact of uncertainty on Influence Maximization algorithms and diagnosing the stability of

algorithms. We study the problem under the DIC and DLT models, with perturbations of the edge

parameters following the Perturbation Interval model. We start our discussion with an artificial

instance with two cliques to demonstrate the existence of instability. We then formally define the

Influence Difference Maximization (IDM) problem in order to measure/characterize the stability of

an Influence Maximization instance.

5.1 Can Instability Occur?
Suppose that we have inferred all parameters θu,v , but are concerned that they may be slightly off:

in reality, the influence probabilities are θ ′u,v ≈ θu,v . Are there instances in which a seed set S that

is very influential with respect to the θu,v may be much less influential with respect to the θ ′u,v? It
is natural to suspect that this might not occur: when the objective function σ varies sufficiently

smoothly with the input parameters (e.g., for linear objectives), small changes in the parameters
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only lead to small changes in the objective value; therefore, optimizing with respect to a perturbed

input still leads to a near-optimal solution.

However, the objective σ of Influence Maximization does not depend on the parameters in a

smooth way. To illustrate the issues at play, consider the following instance of the DIC model.

The social network consists of two disjoint bidirected cliques Kn , and θu,v = ˆθ for all u,v in the

same clique; in other words, for each directed edge, the same activation probability
ˆθ is observed.

The algorithm gets to select exactly k = 1 node. Notice that because all nodes look the same, any

algorithm essentially chooses an arbitrary node, which may as well be from Clique 1.

Let
ˆθ = 1/n be the sharp threshold for the emergence of a giant component in the Erdős-Rényi

Random GraphG(n,p). It is well known [7, 21] that the largest connected component ofG(n,p) has

size O(logn) for any p ≤ ˆθ − Ω(1/n), and size Ω(n) for any p ≥ ˆθ + Ω(1/n). Thus, if unbeknownst

to the algorithm, all true activation probabilities in Clique 1 are p ≤ ˆθ − Ω(1/n), while all true

activation probabilities in Clique 2 are p ′ ≥ ˆθ + Ω(1/n), the algorithm only activates O(logn)
nodes in expectation, while it could have reached Ω(n) nodes by choosing Clique 2. Hence, small

adversarial perturbations to the input parameters can lead to highly suboptimal solutions from any

algorithm. The example reveals a close connection between the stability of a DIC instance and the

question whether a uniform activation probability p lies close to the edge percolation threshold

of the underlying graph. Characterizing the percolation threshold of families of graphs has been

a notoriously hard problem. Successful characterizations have only been obtained for very few

specific classes (such as d-dimensional grids [35] and d-regular expander graphs [3]). Therefore,
it is unlikely that a clean characterization of stable and unstable instances can be obtained. The

connection to percolation also reveals that the instability was not an artifact of having high node

degrees. By the result of Alon et al. [3], the same behavior will be obtained if both components are

d-regular expander graphs, since such graphs also have a sharp percolation threshold.

5.2 Influence Difference Maximization
The example of the two cliques shows that there exist unstable instances, in which an optimal

solution to the observed parameters is highly suboptimal when the observed parameters are slightly

perturbed compared to the true parameters. Of course, not every instance of Influence Maximization

is unstable: for instance, when the probability
ˆθ in the Two-Clique instance is bounded away from

the critical threshold of G(n,p), the objective function varies much more smoothly with
ˆθ . This

motivates the following algorithmic question, which is the main focus of this section: Given an

instance of Influence Maximization, can we diagnose efficiently whether it is stable or unstable?

Under the Perturbation Interval model, an instance (Iu,v )u,v of Influence Maximization is the

interval of the parameters which are subject to perturbations. We say that the instance is stable

if |σθ (S) − σθ ′(S)| is small for all pairs of objective functions σθ ,σθ ′ induced by legal probability

settings
3
, and for all seed sets S of size k . Here, “small” is defined relative to the objective function

value σθ (S
∗
σθ ) of the optimum set.

When |σθ (S) − σθ ′(S)| is actually small compared to σθ (S
∗
σθ ) for all sets S , a user can have

confidence that his optimization result will provide decent performance guarantees even if his input

was perturbed. The converse is of course not necessarily true: even in unstable instances, a solution

that was optimal for the observed input may still be very good for the true input parameters.

Trying to determine whether there are a function σθ ′ and a set S for which |σθ (S) − σθ ′(S)| is
large motivates the following optimization problem: Maximize |σθ (S) − σθ ′(S)| over all pairs of

3
For the DIC model, a probability setting θ is legal when θu,v ∈ [0, 1] for all u, v . For the DLT model, there is an additional

constraint that

∑
u∈N (v ) θu,v ≤ 1 for all v ∈ V .
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feasible functions σθ ,σθ ′ and all sets S . That is, we are interested in the quantity

max

S
max

θ,θ ′∈Θ
|σθ (S) − σθ ′(S)|, (1)

where θ denotes the observed parameter values. For two parameter settings θ ,θ ′
with θ ≥ θ ′

coordinate-wise, it is not difficult to show using a simple coupling argument that σθ (S) ≥ σθ ′(S)
for all S . Therefore, for any fixed set S , the maximum is attained by making θ as large as possible

and θ ′
as small as possible. Hence, solving the following problem is sufficient to solve (1).

Definition 5.1. Given an influence model and two parameter settings θ ,θ ′
with θ ≥ θ ′

coordinate-

wise, define

δθ,θ ′(S) = σθ (S) − σθ ′(S).

Given the set size k , the Influence Difference Maximization (IDM) problem is defined as follows:

Maximize δθ,θ ′(S)
subject to |S | = k .

In this generality, the Influence Difference Maximization problem subsumes the Influence Maxi-

mization problem, by setting θ ′u,v ≡ 0 (and thus also σθ ′ ≡ 0).

While Influence Difference Maximization subsumes Influence Maximization, whose objective

function is monotone and submodular, the objective function of Influence Difference Maximization

is in general neither. To see non-monotonicity, notice that δθ,θ ′(∅) = δθ,θ ′(V ) = 0, while generally

δθ,θ ′(S) > 0 for some sets S .
The function is also not in general submodular. The following example shows non-submodularity

for both the DIC and DLT Models. The graph has four nodes V = {u,v,x ,y} and three edges

(u,v), (v,x), (x ,y). The edges (v,x) and (x ,y) are known to have an activation probability of 1,

while the edge (u,v) has an adversarially chosen activation probability in the interval [0, 1]. With

S = {u} and T = {u,x}, we obtain that δθ,θ ′(S + v) − δθ,θ ′(S) = |∅| − |{v,x ,y}| = −3, while
δθ,θ ′(T +v) − δθ,θ ′(T ) = |∅| − |{v}| = −1, which violates submodularity.

We establish a very strong hardness result in the form of the following theorem.

Theorem 5.2. Under the DIC model, the Influence Difference Maximization objective function

δθ,θ ′(S) cannot be approximated better than n1−ϵ for any ϵ > 0 in polynomial time unless NP ⊆ ZPP.

Proof. We establish the approximation hardness of Influence Difference Maximization without

any constraint on the cardinality of the seed set S . From this version, the hardness of the constrained

problem is inferred easily as follows: if any better approximation could be obtained for the con-

strained problem, one could simply enumerate over all possible values of k from 1 to n, and retain

the best solution, which would yield the same approximation guarantee for the unconstrained

problem.

We give an approximation-preserving reduction from the Maximum Independent Set problem

to the Influence Difference Maximization problem. It is well known thatMaximum Independent

Set cannot be approximated better than O(n1−ϵ ) for any ϵ > 0 unless NP ⊆ ZPP [32].

Let G = (V ,E) be an instance of the Maximum Independent Set problem, with |V | = n. We

construct fromG a directed bipartite graphG ′ with vertex setV ′ ∪V ′′. For each node vi ∈ V , there

are nodes v ′i ∈ V
′
and v ′′i ∈ V

′′
. The edge set is E ′ ∪ E ′′, where E ′ = {(v ′i ,v

′′
j ) | (vi ,vj ) ∈ E}, and

E ′′ = {(v ′i ,v
′′
i ) |vi ∈ V }. All edges of E

′
are known to have an activation probability of 1, while all

edges of E ′′ have an uncertain activation probability from the interval [0, 1].
The difference is maximized by making all probabilities as large as possible for one function

(meaning that all edges in E ′ ∪ E ′′ are present deterministically), while making them as small as

possible for the other (meaning that exactly the edges in E ′ are present).
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First, let S be an independent set in G. Consider the set S ′ = {v ′i |vi ∈ S}. Each node v ′′i with

vi ∈ S is reachable from the correspondingv ′i inG
′
, but not in (V ′∪V ′′,E ′), because S is independent.

Hence, the objective function value obtained in Influence Difference Maximization is at least |S |.
Conversely, consider an optimal solution S ′ to the Influence Difference Maximization problem.

Without loss of generality, we may assume that S ′ ⊆ V ′: any nodev ′′j ∈ V
′′
can be removed from S ′

without lowering the objective value. Assume that S := {vi ∈ V |v
′
i ∈ S

′} is not independent, and

that (vi ,vj ) ∈ E for vi ,vj ∈ S . Then, removing v ′j from S ′ cannot lower the Influence Difference
Maximization objective value of S ′: all of v ′j ’s neighbors in V

′′
contribute 0, as they are reachable

using E ′ already; furthermore, v ′′j also does not contribute, as it is reachable using E ′ from v ′i . Thus,
any node with a neighbor in S can be removed from S ′, meaning that S is without loss of generality

independent in G.
At this point, all nodes v ′′j ∈ V ′′ with (v ′i ,v

′′
j ) ∈ E ′ for some i contribute 0 to the Influence

Difference Maximization objective function, as do the nodes v ′i ∈ S
′
. Therefore, the objective value

of S ′ is exactly the number of nodes v ′′i ∈ V
′′
with v ′i ∈ S

′
, which is exactly |S ′ | = |S |.

5.3 Experiments
While we saw in Section 5.1 that examples highly susceptible (with errors of magnitude Ω(n)) to
small perturbations exist, the goal of this section is to evaluate experimentally how widespread

this behavior is for realistic social networks.

5.3.1 Experimental Setting. We carry out experiments under the DIC model, for six classes of

graphs — four synthetic and two real-world. In each case, the model/data give us a simple graph or

multigraph. Multigraphs are converted to simple graphs by collapsing parallel edges to a single

edge with weight ce equal to the number of parallel edges; for simple graphs, all weights are ce = 1.

The observed probabilities for edges are θe = ce ·p; across experiments, we vary the base probability

p to take on the values {0.01, 0.02, 0.05, 0.1}. The resulting parameter vector is denoted by θ .
The uncertainty interval for e is Ie = [(1 − ∆)θe , (1 + ∆)θe ]; here, ∆ is an uncertainty parameter

for the estimation, which takes on the values {1%, 5%, 10%, 20%, 50%} in our experiments. The

parameter vectors θ+ and θ−
describe the settings in which all parameters are as large (as small,

respectively) as possible.

5.3.2 Network Data. We ran experiments on four synthetic networks and two real social net-

works. Synthetic networks provide a controlled environment in which to compare observed be-

havior to expectations, while real social networks may give us indications about the prevalence of

vulnerability to perturbations in real networks that have been studied in the past.

Synthetic Networks.We generated synthetic networks according to three widely used network

models. The network models are: (1) the 2-dimensional grid, (2) random regular graphs, (3) the

Kronecker Graph model [40] with Core-Peripheral structure (Kronecker-CP), (4) the Kronecker

Graph model with Hierarchical Community structure (Kronecker-HC).

The Kronecker Graph model matches several properties of real-world networks, including

power-law degree distribution, small diameter and community structure [40].

It has been shown that networks with different structures can be generated from the Kronecker

Graph Model, by choosing different seed matrices [40]. We use three different 2-by-2 seed matrices

with different entries, listed in Table 1. The seed matrices generate Erdős-Rényi networks, core-

peripheral networks, and networks with hierarchical community structures, respectively [40].

We generated 2-dimensional grid graphs and random regular graphs with 400 nodes. The

generated Kronecker Graph model graphs with both structures have 512 nodes. For all synthetic

networks, we selected k = 20 seed nodes.
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Table 1. Kronecker Graph Parameters

Name Parameter

Erdős-Rényi

(
0.5 0.5
0.5 0.5

)
Core-Peripheral

(
0.962 0.107
0.107 0.962

)
Hierarchical Community

(
0.962 0.535
0.535 0.107

)
Real Networks. We considered two real networks to evaluate the susceptibility of practical

networks: the co-authorship network STOCFOCS of theoretical CS papers and the retweet network

Haiti. In all experiments, we worked with uniform edge weights p.

STOCFOCS Network. The STOCFOCS co-authorship network is a multigraph extracted from

published papers in the conferences STOC and FOCS from 1964–2001. Each node in the network is

a researcher with at least one publication in one of the conferences. For each multi-author paper,

we add a complete undirected graph among the authors. Parallel edges are compressed into a single

edge with corresponding weight. The resulting graph has 1768 nodes and 10024 edges.

Twitter Dataset. The second real-world cascade dataset we consider is one crawled from Twitter.

It comprises a complete collection of tweets between October 2009 and January 2010. Instead of

using the raw data collection, several datasets are preprocessed from the complete collection of

tweets for different experimental purposes.

We extracted a set of topic-specific networks from the complete collection of tweets. We treated

each hashtag as a separate cascade, and extracted the top 100/250 users with the most tweets

containing these hashtags into two datasets (Twitter100 and Twitter250). The hashtags were

manually grouped into five categories of about 70–80 hashtags each, corresponding to major

events/topics during the data collection period. The five groups are: Haiti earthquake (Haiti), Iran

election (Iran), Technology, US politics, and the Copenhagen climate change summit (Climate).

Examples of hashtags in each group are shown in Table 2. Whenever user B retweeted a post of

user A with a hashtag belonging to category i , we inserted an edge from A to B in graph i . The
extracted networks in Twitter100/250 have 100 and 250 nodes, respectively.

Our decision to treat each hashtag as a separate cascade is supposed to capture that most hashtags

“spread” across Twitter when one user sees another use it, and starts posting with it himself. The

grouping of similar hashtags captures that a user who may influence another to use a hashtag,

say, #teaparty, would likely also influence the other user to a similar extent to use, say, #liberty.

Limiting the data sets to the most active users was necessary because most users had exhibited

very limited activity.

Table 2. Examples of hashtags in each category

Category Hashtags

Iran #iranelection, #iran, #16azar, #tehran

Haiti #haiti, #haitiquake, #supphaiti, #cchaiti

Technology #iphone, #mac, #microsoft, #tech

US politics #obama, #conservative, #teaparty, #liberty

Climate #copenhagen, #cop15, #climatechange
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For the experiments in this section, we use the extracted 250-node network with the topic “Haiti;”

we refer to this dataset as Haiti. The other topic specific-networks are used for experiments in

Section 6.

5.3.3 Algorithms. Our experiments necessitate the solution of two algorithmic problems: Finding

a set of size k of maximum influence, and finding a set of size k maximizing the influence difference.

The former is a well-studied problem, with a monotone submodular objective function. We simply

used the widely known 1 − 1/e approximation algorithm introduced in Section 3.2, which is best

possible unless P=NP.

For the goal of Influence Difference Maximization, we established in Theorem 5.2 that the

objective function is hard to approximate better than a factorO(n1−ϵ ) for any ϵ > 0. For experimental

purposes, we used the Random Greedy algorithm of Buchbinder et al. [9].

The running time of the Random Greedy Algorithm is O(kC |V |), where C is the time required

to estimate д(S ∪ {u}) − д(S). In our case, the objective function is #P-hard to evaluate exactly

[16, 52], but arbitrarily close approximations can be obtained by Monte Carlo simulation. Since each

simulation takes time O(|V |), when runningM = 2000 iterations of the Monte Carlo simulation in

each iteration, the overall running time of the algorithm is O(kM |V |2).
A common technique for speeding up the greedy algorithm for maximizing a submodular

function is the CELF heuristic of Leskovec et al. [41]. When the objective function is submodular,

the standard greedy algorithm and CELF obtain the same result. However, when it is not (as is

the case here), the results may be different. We ran the Random Greedy algorithm both with and

without the CELF heuristic. The single exception is the largest input, the STOCFOCS network.

(Here, the greedy algorithm without CELF did not finish in a reasonable amount of time.) For all

networks other than STOCFOCS, the results using CELF are not significantly different from the

reported results without the CELF optimization. For STOCFOCS, we therefore only report the result

including the CELF heuristic.

5.3.4 Results. In all our experiments, the results for the Grid and Small-World network were

sufficiently similar that we omit the results for grids here. As a first sanity check, we empirically

computedmaxS : |S |=1 δθ+,θ− (S) for the complete graph on 200 nodes with Ie = [1/200 · (1−∆), 1/200 ·
(1 + ∆)] and k = 1. According to the analysis in Section 5.1, we would expect extremely high

instability. The results, shown in Table 3, confirm this expectation.

Table 3. Instability for the clique K200.

∆ σθ+ σθ−

50% 66.529 1.955

20% 23.961 4.253

10% 15.071 6.204

Next, Figure 1 shows the (approximately) computed values maxS : |S |=k δθ+,θ− (S), and — for cal-

ibration purposes — maxS : |S |=k σθ (S) for all networks and parameter settings. Notice that the

result is obtained by running the Random Greedy algorithm without any approximation guarantee.

However, as the algorithm’s output provides a lower bound on the maximum influence difference,

a large value suggests that Influence Maximization could be unstable. On the other hand, small

values do not guarantee that the instance is stable.

While individual networks vary somewhat in their susceptibility, the overall trend is that larger

estimates of baseline probabilities θ make the instance more susceptible to noise, as do (obviously)

larger uncertainty parameters ∆. In particular, for ∆ ≥ 20%, the noise (after scaling) dominates
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(a) Kronecker-CP (b) Kronecker-HC

(c) STOCFOCS (d) Haiti

Fig. 1. Comparison between Influence Difference Maximization and Influence Maximization results for four

different networks. (The result for the STOCFOCS network is obtained with CELF optimization.)

the Influence Maximization objective function value, meaning that optimization results should be

used with care. The only exception are the Kronecker-HC networks, which are overall much less

susceptible to uncertainty. The reason is that the networks tend to be much sparser than the other

networks; for example, the size of cascades is roughly half of that in the Kronecker-CP network.

Next, we evaluate the dependence of the noise tolerance on the degrees of the graph, by ex-

perimenting with random d-regular graphs whose degrees vary from 5 to 25. It is known that

such graphs are expanders with high probability, and hence have percolation thresholds of 1/d
[3]. Accordingly, we set the base probability to (1 + α)/d with α ∈ {−20%, 0, 20%}. We use the

same setting for uncertainty intervals as in the previous experiments. Figure 2 shows the ratio
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between Influence Difference Maximization and Influence Maximization, i.e.,

maxS δθ+,θ− (S )
maxS σθ (S )

, with

α ∈ {−20%, 0, 20%}. It indicates that for random regular graphs, the degree does not appear to

significantly affect stability, and that again, noise around 20% begins to pose a significant challenge.

(a) α = −20% (b) α = 0

(c) α = 20%

Fig. 2. Ratio between the computed values of Influence Difference Maximization and Influence Maximization

under random regular graphs with different degree.

Moreover, we observe that the ratio reaches its minimum when the edge activation probability

is exactly at the percolation threshold 1/d . This result is in line with percolation theory and also

the analysis of Adiga et al. [2].
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As a general takeaway message, for larger amounts of noise (even just a relative error of 20%) —

which may well occur in practice — a lot of caution is advised in using the results of algorithmic

Influence Maximization.

6 ROBUST INFLUENCE MAXIMIZATION
The fact that our main theorem for diagnosing instability is negative (i.e., a strong approximation

hardness result) is somewhat disappointing, in that it rules out reliably categorizing data sets

as stable or unstable. This motivates our investigation of the third question: setting up a robust

Influence Maximization framework wherein an algorithm is presented with a set of influence

functions derived from different influence models or different parameter settings for the same

model. The main motivation for our work is that often, σ is not precisely known to the algorithm

trying to maximize influence. There may be a (possibly infinite as under the PIM in Section 4.1)

number of candidate functions σ , resulting from different diffusion models or parameter settings.

Since the algorithm does not know which σ̂ ∈ Σ is the ground truth influence function, in

the Robust Influence Maximization problem, it must “simultaneously optimize” for all objective

functions in Σ, in the sense of maximizing ρ(S) = minσ̂ ∈Σ
σ̂ (S )
σ̂ (Ŝ )

, where Ŝ ∈ argmaxS σ̂ (S) is an

optimal solution knowing which function σ̂ is to be optimized. In other words, the selected set

should simultaneously get as close as possible to the optimal solutions for all possible objective

functions. That is, the algorithm’s goal is to identify a set of k nodes who are simultaneously

influential for all influence functions, compared to the (function-specific) optimum solutions.

To be more specific, our study is guided by the following overarching questions:

(1) How well can the objective ρ be optimized in principle?

(2) How well do simple heuristics perform in theory?

(3) How well do simple heuristics perform in practice?

(4) How do robustly and non-robustly optimized solutions differ qualitatively?

We address these questions as follows. First, we show (in Section 6.2.2) that unless the algorithm

gets to exceed the number of seeds k by at least a factor ln |Σ|, approximating the objective ρ to

within a factor O(n1−ϵ ) is NP-hard for all ϵ > 0.

However, when the algorithm does get to exceed the seed set target k by a factor of ln |Σ| (times

a constant), much better bicriteria approximation guarantees can be obtained. Specifically, we show

that a modification of an algorithm of Krause et al. [37] uses O(k ln |Σ|) seeds and finds a seed set

whose influence is within a factor (1 − 1/e) of optimal.

We also investigate two straightforward heuristics:

(1) Run a greedy algorithm to optimize ρ directly, picking one node at a time.

(2) For each objective function σ ∈ Σ, find a set Sσ (approximately) maximizing σ (Sσ ). Evaluate
each of these sets under ρ(Sσ ), and keep the best one.

We first exhibit instances on which both of the heuristics perform very poorly. Next (in Sec-

tion 6.3), we focus on more realistic instances, exemplifying the types of scenarios under which

robust optimization becomes necessary. In the first set of experiments, we infer influence networks

on a fixed node set from Twitter cascades on different topics. Individuals’ influence can vary signifi-

cantly based on the topic, and for a previously unseen topic, it is not clear which inferred influence

network to use. In additional sets of experiments, we derive data sets from the same MemeTracker

data [39], but use different time slices, different inference algorithms and parametrizations, and

different samples from confidence intervals.

The main outcome of the experiments is that while the algorithm with robustness as a design

goal typically (though not even always) outperforms the heuristics, the margin is often quite small.

Hence, heuristics may be viable in practice, when the influence functions are reasonably similar. A
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visual inspection of the nodes chosen by different algorithms reveals how the robust algorithm

“hedges its bets” across models, while the non-robust heuristic tends to cluster selected nodes in

one part of the network.

6.1 Problem Definition
For concreteness, we focus on two diffusion models: the DIC model and the CIC model introduced

in Section 3.1. Our framework applies to most other diffusion models; in particular, most of the

concrete results carry over to the discrete and continuous-time Linear Threshold models [34, 49].

A specific instance is described by the class of its influence model (such as DIC, CIC, or others not

discussed here in detail) and the setting of the model’s parameters; in the DIC and CIC models above,

the parameters θu,v are the activation probabilities and the parameters of the delay distributions,

respectively.

We now formally define the Robust Influence Maximization problem.

Definition 6.1 (Robust Influence Maximization). Given a set Σ of influence functions, maximize

the objective

ρ(S) = min

σ ∈Σ

σ (S)

σ (S∗σ )
,

subject to a cardinality constraint |S | ≤ k . Here S∗σ is a seed set with |S∗σ | ≤ k maximizing σ (S∗σ ).

A solution to the Robust Influence Maximization problem achieves a large fraction of the maxi-

mum possible influence (compared to the optimal seed set) under all diffusion settings simultane-

ously. Alternatively, the solution can be interpreted as solving the Influence Maximization problem

when the function σ is chosen from Σ by an adversary.

While Definition 6.1 per se does not require the σ ∈ Σ to be submodular and monotone, these

properties are necessary to obtain positive results. Hence, we will assume here that all σ ∈ Σ are

monotone and submodular, as they are for standard diffusion models. Notice that even then, ρ is

the minimum of submodular functions, and as such not necessarily submodular itself [37].

A particularly natural and important special case of Definition 6.1 is the Perturbation Interval

model we considered in Section 4.1. Here, the influence model is known (for concreteness, DIC),

but there is uncertainty about its parameters. For each edge e , we have an interval Ie = [ℓe , re ], and
the algorithm only knows that the parameter (say, θe ) lies in Ie ; the exact value is chosen by an

adversary. Notice that Σ is (uncountably) infinite under this model. While this may seem worrisome,

the following lemma shows that we only need to consider finitely (though exponentially) many

functions:

Lemma 6.2. Under the Perturbation Interval model for DIC
4
, the worst case for the ratio in ρ for

any seed set S is achieved by making each θe equal to ℓe or re .

Proof. Fix one edge ê , and consider an assignment (fixed for now) θe ∈ Ie of activation probabilities
to all edges e , ê . Let x ∈ Iê denote the (variable) activation probability for edge e . First, fix any
seed set S , and define fS (x) to be the expected number of nodes activated by S when the activation

probabilities of all edges e , ê are θe and the activation probability of ê is x .
We express fS (x) using the triggering set approach introduced in [34]. Let G be the set of all

possible directed graphs on the given node set V . For any graph G, let RG (S) be the number of

nodes reachable from S in G via a directed path, and let P(G) be the probability that graph G is

4
The result carries over with a nearly identical proof to the Linear Threshold model. We currently do not know if it also

extends to the CIC model.
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obtained when each edge e is present inG independently with probability θe (or x , if e = ê). By the

triggering set technique [34, Proof of Theorem 4.5], we get that

fS (x) =
∑
G ∈G

P(G) · RG (S).

The probabilities P(G) for obtaining a graph G are:

P(G) = (1 − x) ·
∏
e ∈G

θe ·
∏

e<G,e,ê

(1 − θe ) when ê < G;

P(G) = x ·
∏

e ∈G,e,ê

θe ·
∏
e<G

(1 − θe ) when ê ∈ G .

In either case, we obtain a linear function of x , so that fS (x), being a sum of linear functions, is

also linear in x .
Therefore, the function д(x) := maxS fS (x), being a maximum of linear functions of x , is convex

and piecewise linear. Consider any fixed seed set S , and the ratio h(x) :=
fS (x )
д(x ) . Its α-level set

{x | h(x) ≥ α } is equal to {x | д(x) − 1/α · fS (x) ≤ 0}. Because д(x) − 1/α · fS (x), a convex function
minus a linear function, is convex, its 0-level set is convex. Hence, all α-level sets of h are convex,

and h is quasi-concave.

Because h is quasi-concave, it is unimodal, and thus minimized at one of the endpoints of the

interval. Hence, we can minimize the ratio h(x) — and thus the performance of the seed set S— by

making x either as small or as large as possible. By repeating this argument for all edges ê one by
one, we arrive at an influence setting minimizing the performance of S , and in which all influence

probabilities are equal to the left or right endpoint of the respective interval Iê .

Lowalekar et al. [42] have proved a similar result to Lemma 6.2. The difference lies in the objective

of Robust Influence Maximization. We model the problem as maximizing the minimum ratio ρ(S)
while Lowalekar et al. consider minimizing the maximum regret maxσ ∈Σ σ (S

∗
σ ) − σ (S). They prove

that the maximum regret is achieved by making each θe equal to ℓe or re similarly by showing that

the maximum regret is also quasi-concave.

6.2 Algorithm and Hardness
Even when Σ contains just a single function σ , Robust Influence Maximization is exactly the

traditional Influence Maximization problem, and is thus NP-hard. This issue also appears in a more

subtle way: evaluating ρ(S) (for a given S) involves taking the minimum of
σ (S )
σ (S∗σ )

over all σ ∈ Σ. It

is not clear how to calculate the ratio
σ (S )
σ (S∗σ )

even for one of the σ , since the scaling constant σ (S∗σ )

(which is independent of the chosen S) is exactly the solution to the original Influence Maximization

problem, and thus NP-hard to compute.

This problem, however, is fairly easy to overcome: instead of using the true optimum solutions S∗σ
for the scaling constants, we can compute (1 − 1/e)-approximations S

д
σ using the greedy algorithm,

because the σ are monotone and submodular. Then, because (1 − 1/e) · σ (S∗σ ) ≤ σ (S
д
σ ) ≤ σ (S∗σ ) for

all σ ∈ Σ, we obtain that the “greedy objective function”

ρд(S) = min

σ ∈Σ

σ (S)

σ (S
д
σ )
,

satisfies the following property for all sets S :

(1 − 1/e) · ρд(S) ≤ ρ(S) ≤ ρд(S). (2)

Hence, optimizing ρд(S) in place of ρ(S) comes at a cost of only a factor (1−1/e) in the approximation

guarantee. We will therefore focus on solving the problem of (approximately) optimizing ρд(S).
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Because each σ is monotone and submodular, and the σ (S
д
σ ), just like the σ (S

∗
σ ), are just scaling

constants, ρд(S) is a minimum of monotone submodular functions. However, we show that even

in the context of Influence Maximization, this minimum is impossible to approximate to within

any polynomial factor. This holds even in a bicriteria sense, i.e., the algorithm’s solution is allowed

to pick (1 − δ ) ln |Σ| · k nodes, but is compared only to solutions using k nodes. The result also

extends to the seemingly more restricted Perturbation Interval model, giving an almost equally

strong bicriteria approximation hardness result there.

Theorem 6.3. Let δ , ϵ > 0 be any constants, and assume that P , NP. There are no polynomial-time

algorithms for the following problems:

(1) Given n nodes and a set Σ of influence functions on these nodes (derived from the DIC or CIC

models), as well as a target size k . Find a set S of |S | ≤ (1 − δ ) ln |Σ| · k nodes, such that

ρ(S) ≥ ρ(S∗) · Ω(1/n1−ϵ ), where S∗ is the optimum solution of size k .
(2) Given a graph G on n nodes and intervals Ie for edge activation probabilities under the DIC

model (or intervals Ie for edge delay parameters under the CIC model), as well as a target size k .
Find a set S of cardinality |S | ≤ ϵ · c · lnn · k (for a sufficiently small fixed constant c) such that

ρ(S) ≥ ρ(S∗) · Ω(1/n1−ϵ ), where S∗ is the optimum solution of size k .

Proof. We prove the two parts of the theorem by (slightly different) reductions from the gap

version of Set Cover. A Set Cover instance consists of a universeU = {a1, . . . ,aN }, a collection
T of M subsets of U , and an integer k . A set cover is a collection C ⊆ T such that

⋃
T ∈C T = U .

Without loss of generality, we assume that each element is contained in at least one set — otherwise,

there trivially is no set cover. Also, without loss of generality, we assume that k ≤ min(M,N ), as
otherwise, one can trivially pick all sets or one designated set per element.

The gap version of Set Cover then asks us to decide whether there is a set cover C of size

|C| ≤ k or whether each set cover has size at least (1 − δ ) lnN · k . (The algorithm is promised that

the minimum size will never lie between these two values.) Dinur and Steurer [17, Corollary 1.5]

showed that the gap version of Set Cover is NP-hard.

Part 1. Based on the Set Cover instance, we construct the following instance of Robust Influence

Maximization under the DIC model. Letm := (max(N ,M))3/ϵ . The instance consists of N bipartite

graphs on a shared vertex set V = X ∪ Y . X contains one node xT for each set T ∈ T ; Y contains

m nodes ya,1, . . . ,ya,m for each element a ∈ U . Hence, the number of nodes in the constructed

graph is n = M +mN = Θ(mN ) ≤ Θ(m1+ϵ/3); in particular, it is polynomial, and the reduction

takes polynomial time.

In the ith influence function, all nodes xT with T ∋ ai have a directed edge with activation

probability 1 (or exponential delay distribution with delay parameter 1) to all of the yai , j (for all j);
no other edges are present. Hence, |Σ| = N , and lnN = ln |Σ|. For the CIC model, the time window

has size Ts = NM .

First, consider the case when there is a set cover C of size k . Choose the corresponding xT ,T ∈ C
as seed nodes, and call the resulting seed set S . Because C is a set cover, in the ith instance, all of
the yai , j are activated, for a total of at leastm +k nodes. (Under the CIC model, all of these yai , j are
activated with high probability, not deterministically, within T steps.) Because none of the nodes

in X and none of the yai′, j , i
′ , i have incoming edges in the ith instance, the optimum solution

for that instance can activate at most all of them nodes yai , j and its k selected nodes, for a total

ofm + k . Thus, the objective function value will be 1 (or arbitrarily close to 1 w.h.p. for the CIC

model).

Now assume that there is no set cover of size (1 − δ ) lnN · k , and consider any seed set S . Let
k ′ = |S ∩ X | ≤ (1 − δ ) lnN · k be the number of nodes from X selected as seeds. Because the set
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S := {T ∈ T | xT ∈ S} cannot be a set cover by assumption, there must be some ai <
⋃

T ∈S T .
Therefore, under the ith influence function, none of the yai , j can be ever activated, except those

selected directly in S . Hence, the number of nodes activated under the ith influence function is at

most |S | ≤ (1 − δ ) lnN · k . On the other hand, by selecting just one node xT corresponding to any

set T ∋ ai , one could have activated all of the yai , j (with high probability under the CIC model),

for a total ofm. Thus, the objective function value is at most ρ(S) ≤ (1−δ ) lnN ·km ≤ O(m2ϵ/3−1) ≤

O(n
2ϵ−3
3+ϵ ) = o(n−(1−ϵ )), where we crudely bounded both lnN and k by N ≤ O(mϵ/3).

Hence, a ((1 − δ ) lnN ,O(n1−ϵ )) bicriteria approximation algorithm could distinguish the two

cases, and thus solve the gap version of Set Cover.

Part 2. For the second part, we just consider the gap version with a fixed δ , say, δ = 1

2
. Then,

in the hard instances,M and N are polynomially related, which we assume here, i.e.,M ≤ N q
for

some constant q which is independent of ϵ or N .

Based on the Set Cover instance, we construct a different Robust Influence Maximization

instance, consisting of a directed graph with three layers V = X ∪ Y ∪ Z . The first layer again
contains one node xT for each set T ∈ T ; the second layer now contains just one node ya for

each element a ∈ U . There is an edge (with known influence probability 1, or exponential delay

distribution with parameter 1) from xT to ya if and only if a ∈ T . The third layer Z contains

m = (max(N ,M))2/ϵ nodes. For each a ∈ U and z ∈ Z , there is a directed edge (ya , z) with
complete uncertainty about its parameter: under the DIC model, the probability is in the interval

I(ya,z) = [0, 1], and under the CIC model, the edge delay is exponentially distributed with parameter

in the interval I(ya,z) = (0, 1]. In total, the graph has n = N +M +m = Θ(m) nodes (in particular,

polynomially many), and the reduction takes polynomial time. Because N is at most polynomially

smaller than M , we have N = Ω(nϵ/2q), and thus lnN = Ω( ϵq · ln(n)). For the CIC model, we set

the time horizon to Ts = NM .

First, consider the case when there is a set cover C of size k . Consider choosing the corresponding
xT ,T ∈ C as seed nodes; call the resulting seed set S . S will definitely activate all nodes in Y , for a
total of k +N . Now, consider any assignment of probabilities θya,z or edge delays dya,z to the edges
from Y to Z , and an optimal seed set S∗ of size k . Let Z ∗ = Z ∩ S∗ be the set of seed nodes chosen

from Z , of size k ′. Then, S∗ definitely activates all of Z ∗, and at most all N nodes from Y as well as

k − k ′ nodes from X , for a total (so far) of N + k . For any node z ∈ Z \ Z ∗, the probability that it is

activated by S is at least as large as under S∗, because for any values of the individual activation

probabilities or delays between Y and Z , the fact that S activates all of Y ensures that any node in

Z activated under S∗ is also activated under S (by time T , in the case of the CIC model). Because

the expected number of nodes activated from Z \ Z ∗ is at least as large under S as under S∗ (for all
settings of the activation probabilities or edge delay parameters), we get that ρ(S) ≥ 1.

Now assume that there is no set cover of size
1

2
lnN ·k , and consider any seed set S . If S contained

any node ya , we could replace it with any node xT such that a ∈ T and activate at least as many

nodes as before, so assumewithout loss of generality that S∩Y = ∅. Because |S∩X | ≤ |S | ≤ 1

2
lnN ·k ,

the gap guarantee implies that there is at least one node ya ∈ Y that is never activated by S . Now
consider the probability assignment θya,z = 1 for all z ∈ Z , and θy,z = 0 for all y , ya , z ∈ Z .
(Under the CIC model, set dya,z = 1 for all z ∈ Z , and dy,z = 1/(NM)2 for all y , ya , z ∈ Z .) Then,
the seed set S cannot activate any nodes in Z (except those it may have selected), and will activate

a total of at most N + k = O(N ) = O(nϵ/2) nodes. (Under the CIC model, this statement holds with

high probability.) On the other hand, the seed set {ya} (just a single node) would have activated all

of Z (with high probability, under the CIC model), for a total ofm + 1 = Ω(n) nodes. Hence, the
ratio is at most O(nϵ/2/n) = O(1/n1−ϵ/2), implying that ρ(S) ≤ O(1/n1−ϵ/2).
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If there were an (ϵ · c · ln(n),O(n1−ϵ )) bicriteria approximation algorithm for a sufficiently small

constant c , it could distinguish which of the two cases (ρ(S) = 1, ρ(S) ≤ O(1/n1−ϵ/2)) applied, thus
solving the gap version of Set Cover.

The hardness results naturally apply to any diffusion model that subsumes the DIC or CIC models.

However, an extension to the DLT model is not immediate: the construction relies crucially on

having many edges of probability 1 into a single node, which is not allowed under the DLT model.

6.2.1 Bicriteria Approximation Algorithm. Theorem 6.3 implies that to obtain any non-trivial

approximation guarantee, one needs to allow the algorithm to exceed the seed set size by at least

a factor of ln |Σ|. In this section, we therefore focus on such bicriteria approximation results, by

slightly modifying an algorithm of Krause et al. [37]. The difference is that we use the Greedy

Mintss algorithm [28] (with pseudo code in Algorithm 3) to solve the submodular coverage

subproblem.

After we proposed the bicriteria approximation algorithm [33], [11] designed an alternative

algorithm with similar guarantees. Their algorithm first generates a distribution over many solution

sets by reducing robust optimization to a Bayesian optimization problemwith an iterative weighting

scheme. Then, by sampling a logarithmic number of solutions and taking their union, their algorithm

implies a similar bicriteria result to ours.

The high-level idea of the algorithm is as follows. Fix a real value c , and define h(c)σ (S) :=

min(c, σ (S )
σ (Sдσ )
) and H (c)(S) :=

∑
σ ∈Σ h

(c)
σ (S). Then, ρ

д(S) ≥ c if and only if σ (S )
σ (Sдσ )

≥ c for all σ ∈ Σ. But

because by definition, h(c)σ (S) ≤ c for all σ , the latter is equivalent to H (c)(S) ≥ |Σ| · c . (If any term

in the sum is less than c , no other term can ever compensate for it, because they are capped at c .)
Because H (c)(S) is a non-negative linear combination of the monotone submodular functions

h(c)σ , it is itself a monotone and submodular function. This enables the use of a greedy ln |Σ|-
approximation algorithm to find an (approximately) smallest set S with H (c)(S) ≥ c |Σ|. If S has

size at most k ln |Σ|, this constitutes a satisfactory solution, and we move on to larger values of

c . If S has size more than k ln |Σ|, then the greedy algorithm’s approximation guarantee ensures

that there is no satisfactory set S of size at most k . Hence, we move on to smaller values of c . For
efficiency, the search for the right value of c is done with binary search and a specified precision

parameter.

A slight subtlety in the greedy algorithm is thatH (c) could take on fractional values. Thus, instead
of trying to meet the bound c |Σ| precisely, we aim for a value of c |Σ| − ϵ . Then, the analysis of the
Greedy Mintss algorithm of Goyal et al. [28] (of which our algorithm is an unweighted special

case) applies. The resulting algorithm Saturate Greedy is given as Algorithm 2. The simple greedy

subroutine — a special case of the Greedy Mintss algorithm — is given as Algorithm 3.

The slight difference between our algorithm and the algorithm of Krause et al. [37] lies in how

the submodular coverage subproblem is solved. Both [37] and the Greedy Mintss algorithm [28]

greedily add elements. However, the Greedy Mintss algorithm adds elements until the desired

submodular objective is attained up to an additive ε term, while [37] requires exact coverage. That is,

the while loop in line 3 in Algorithm 3 exits only if f (S) ≥ η in [37]. Moreover, directly considering

real-valued submodular functions instead of going through fractional values leads to a more direct

analysis of the Greedy Mintss algorithm [28].

By combining the discussion at the beginning of this section (about optimizing ρ vs. ρд) with the

analysis of Krause et al. [37] and Goyal et al. [28] (the following theorem), we obtain the following

approximation guarantee.
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ALGORITHM 2: Saturate Greedy (Σ, k , precision γ )

1: Initialize cmin ← 0, cmax ← 1.

2: while (cmax − cmin) ≥ γ do
3: c ← (cmax + cmin)/2.

4: Define H (c)(S) ←
∑
σ ∈Σ min(c, σ (S )

σ (Sдσ )
).

5: S ← Greedy Mintss(H (c),k, c · |Σ|, c · γ/3).
6: if |S | > β · k then
7: cmax ← c .
8: else
9: cmin ← c · (1 − γ/3), S∗ ← S .
10: end if
11: end while
12: return S∗.

ALGORITHM 3: Greedy Mintss (f , k , threshold η, error ε)

1: Initialize S ← ∅.
2: while f (S) < η − ε do
3: u ← argmaxv<S f (S ∪ {v}).
4: S ← S ∪ {u}.
5: end while
6: return S .

Theorem 6.4 (Theorem 1 in [28]). Let ε > 0 be any shortfall and let S be the solution of Greedy

Mintss with chosen threshold η − ε . Then |S | ≤ |S∗ | · (1 + ln
η
ε ) where S

∗
is the optimal solution of the

submodular set cover problem.

Theorem 6.5. Let γ > 0 be arbitrary and β = 1 + ln |Σ| + ln 3

γ . Saturate Greedy finds a seed set

Ŝ of size |Ŝ | ≤ βk with

ρ(Ŝ) ≥ (1 − 1/e) · ρ(S∗) − γ ,

where S∗ ∈ argmaxS : |S | ≤kρ(S) is an optimal robust seed set of size k .

Proof. Algorithm 2 uses Algorithm 3 (Greedy Mintss) as a subroutine to find
5
a solution S such

that f (S) ≥ η − ε and |S | ≤ |S∗ | · (1 + ln
η
ε ), where S

∗
is a smallest solution guaranteeing f (S∗) ≥ η.

In light of the general outline and motivation for the Saturate Greedy algorithm given above,

it mostly remains to verify how the guarantees for Greedy Mintss and the balancing of the

parameters carry through.

We will show that throughout the algorithm (or more precisely: the binary search), cmin always

remains a lower bound on the solution for the problem with the relaxed cardinality constraint,

while cmax remains an upper bound on the solution for the original problem. In other words, there

5
Technically, the guarantees on Greedy Mintss depend on being able to evaluate f precisely [28, Theorem 1]. However,

Theorem 2 of [28] states that by obtaining (1 ± δ )-approximations to f , we can ensure that |S | ≤ (1 + δ ′) |S∗ | · (1 + ln η
ε ),

where δ ′ → 0 as δ → 0. For influence coverage functions, arbitrarily close approximations to f can be obtained by Monte

Carlo simulations. We therefore ignore the issue of sampling accuracy, and perform the analysis as though f could be

evaluated precisely. Otherwise, the approximations carry through in a straightforward way, leading to multiplicative factors

(1 + δ ′′).
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is no set S of cardinality at most |S | ≤ k with ρ(S) > cmax, and there is a set S of cardinality at most

|S | ≤ βk with ρ(S) ≥ cmin.

To show this claim, consider the set S returned by the Greedy Mintss algorithm. If |S | > βk ,
the guarantee for Greedy Mintss implies that |S | ≤ β |S∗ |, where S∗ is the optimal solution for

the instance. Because |S∗ | ≥ |S |/β > k , the value c is not feasible, and the algorithm is correct in

setting cmax to c .
Otherwise, |S | ≤ βk , and the guarantee of Greedy Mintss in Theorem 6.4 implies that H (c)(S) ≥

c · |Σ| − c · γ/3. Because each h(c)σ (S) ≤ c by definition, we get for all σ ,

h(c)σ (S) ≥ H (c)(S) − (|Σ| − 1) · c ≥ c − c · γ/3,

and therefore ρ(S) ≥ c − c · γ/3. This confirms the correctness of assigning cmin = c · (1 − γ/3).
Since we do not set cmin = c , we need to briefly verify termination of the binary search. For

any iteration in which we update cmin, let ∆ := cmax − cmin ≥ γ . When the new c ′
min

is set to

c · (1 − γ/3) ≥ c − γ/3, we get that cmax − c
′
min
= (cmax − c) + (c − c

′
min
) ≤ ∆/2 + γ/3 ≤ 5∆/6.

Hence, the size of the interval keeps decreasing geometrically, and the binary search terminates in

O(log(1/γ )) iterations.
At the time of termination, we obtain that |c∗ − cmin | ≤ γ . Combining this bound with the factor

of (1 − 1/e) we lost due to approximating ρ with ρд , we obtain the claim of the theorem.

Theorem 6.5 holds very broadly, so long as all influence functions are monotone and submodular.

This includes the DIC, DLT, and CIC models, and allows mixing influence functions from different

model classes.

Notice the contrast between Theorems 6.5 and 6.3. By allowing the seed set size to be exceeded

just a little more (a factor ln |Σ| +O(1) instead of 0.999 ln |Σ|), we go from Ω(n1−ϵ ) approximation

hardness to a (1 − 1/e)-approximation algorithm.

6.2.2 Simple Heuristics. In addition to the Saturate Greedy algorithm, our experiments use

two natural baselines. The first is a simple greedy algorithm Single Greedywhich adds βk elements

to S one by one, always choosing the one maximizing ρд(S ∪ {v}). While this heuristic has provable

guarantees when the objective function is submodular, this is not the case for the minimum of

submodular functions.

The second heuristic is to run a greedy algorithm for each objective function σ ∈ Σ separately,

and choose the best of the resulting solutions. Those solutions are exactly the sets S
д
σ defined earlier

in this section. Thus, the algorithm consists of choosing argmaxσ ∈Σρ
д(S

д
σ ). We call the resulting

algorithm All Greedy. A variant of this heuristic was also proposed by Chen et al. [13] as the

LUGreedy algorithm under the Perturbation Interval Model; in their work, Σ contains only two

functions: one with all edge parameters set to the maximum, the other one with all edge parameters

set to the minimum.

In the worst case, both Single Greedy and All Greedy can perform arbitrarily badly, as seen by

the following class of examples with a given parameter k . The example consists of k instances of

the DIC model for the following graph with 3k +m nodes (wherem ≫ k). The graph comprises a

directed complete bipartite graph Kk,m with k nodes x1, . . . ,xk on one side andm nodes y1, . . . ,ym
on the other side, as well as k separate edges (u1,v1), . . . , (uk ,vk ) between 2k new nodes {ui } and
{vi }. The edges (ui ,vi ) have activation probability 1 in all instances. In the bipartite graph, in the

ith scenario, only the edges leaving node xi have probability 1, while all others have 0 activation

probability.

The optimal solution for Robust Influence Maximization is to select all nodes xi , since one of
them will succeed in activating them nodes yj . The resulting objective value will be close to 1.

However, All Greedy only picks one node xi and the remaining k − 1 nodes as uj . Single Greedy

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:24 Xinran He and David Kempe

instead picks all of the uj . Thus, both All Greedy and Single Greedy will have robust influence

close to 0 asm grows large. Empirical experiments confirm this analysis. For example, for k = 2

andm = 100, Saturate Greedy achieves ρ = 0.985, while Single Greedy and All Greedy only

achieve 0.038 and 0.029, respectively.

Implementation. The most time-consuming step in all of the algorithms is the estimation of

influence coverage, given a seed set S . Naïve estimation by Monte Carlo simulation could lead to a

very inefficient implementation. The problem is even more pronounced compared to traditional

Influence Maximization as we must estimate the influence in multiple diffusion settings. We use the

ConTinEst algorithm of Du et al. [20] for fast influence estimation under the CIC model. For the

DIC model, we generalize the approach of Du et al. To accelerate the Greedy Mintss algorithm,

we also apply the CELF optimization [41] in all cases. Analytically, one can derive linear running

time (in both n and |Σ|) for all three algorithms, thanks to the fast influence estimation. This is

borne out by detailed experiments in Section 6.3.4.

6.3 Experiments
We empirically evaluated the Saturate Greedy algorithm and the Single Greedy and All Greedy

heuristics. Our goal is twofold: (1) Evaluate how well Saturate Greedy and the heuristics perform

on realistic instances. (2) Qualitatively understand the difference between robustly and non-robustly

optimized solutions.

Our experiments were all performed on real-world data sets. The exception was the scalability

experiments in Section 6.3.4, which benefits from the controlled environment of synthetic networks.

The data sets span the range of different causes for uncertainty, namely: (1) influence functions

are learned from cascades for different topics; (2) influence functions are learned with different

modeling assumptions; (3) influence functions are only inferred to lie within intervals Ie (the

Perturbation Interval model).

The first real-world data we consider is the Twitter dataset introduced in detail in Section 5.3.2.

The second real-world cascade dataset we consider is the MemeTracker dataset.

MemeTracker Dataset. The MemeTracker dataset [39] contains memes extracted from the Blog-

sphere and main-stream media sites between August 2008 and February 2009. It tracks the quotes

and phrases that appear most frequently over time across this entire online news spectrum. Overall,

Memetracker tracks more than 17 million different phrases; about 54% of the total phrase/quote

mentions appear on blogs and 46% in news media. The dataset is available for download at the

SNAP Library
6
.

MemeTracker NetworkWe constructed a diffusion network from the MemeTracker dataset.

We restricted ourselves to data from only August 2008 and the 500 most active users. We inferred a

diffusion network among the active users from the cascades during the period, using the ConNIe

algorithm [44] The resulting network together with the parameters (activation probabilities) is

referred to as the MemeTracker-DIC network.

Time-specific Networks Besides the MemeTracker-DIC network, we extracted a set of time-

specific networks according to different times of activities. We extracted the 2000/5000 sites with

the most posting activity across the six-month period we study (MemeTracker2000/5000). We

grouped the cascades by their publishing month, leading to six groups of cascades. We constructed

six diffusion networks, one for each month, from the hyperlinks between the blog posts during the

same period. That is, if site A published an article in August with a link to site B, we added an edge

in the diffusion network of August.

6
https://snap.stanford.edu/data/memetracker9.html
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6.3.1 Different Networks. We first focused on the case in which the diffusion model is kept

constant: we used the DIC model, with parameters specified below. Different objective functions

were obtained from observing cascades (1) on different topics. We used Twitter retweet networks

for different topics (Twitter100/250), discussed in depth in Section 5.3.2. (2) at different times. We

used MemeTracker diffusion network snapshots at different times (MemeTracker2000/5000). The

parameters of the DIC model used for this set of experiments are summarized in Table 4.

Table 4. Diffusion model settings

Data set Edge Activation Probability # Seeds

Twitter100 0.2 10

Twitter250 0.1 20

MemeTracker2000 0.05 50

MemeTracker5000 0.05 100

Recalling that in the worst case, a relaxation in the number of seeds is required to obtain robust

seed sets, we allow all algorithms to select more seeds than the solution they are compared against.

Specifically, for the Twitter100 and Twitter250 datasets, we report results in which the algorithms

may select k , 1.5 · k and 2 · k seeds, respectively. Because the number of seeds selected is larger

for the MemeTracker data sets (k = 50 for the MemeTracker2000 data set and k = 100 for the

MemeTracker5000 data set), for the MemeTracker data sets, we also include two additional more

fine-grained settings: letting the algorithms select 1.1 · k and 1.25 · k seeds. The reported results

are averaged over three independent runs of each of the algorithms.

Results: Performance. The aggregate performance of the different algorithms on the four data

sets is shown in Figure 3.

The first main insight is that (in the instances we studied) getting to over-select seeds by 50%,

all three algorithms achieve a robust influence of at least 1.0. In other words, 50% more seeds let

the algorithms perform as though they knew exactly which of the (adversarially chosen) diffusion

settings was the true one. This suggests that the networks in our data sets share a lot of similarities

that make influential nodes in one network also (mostly) influential in the other networks. This

interpretation is consistent with the observation that the baseline heuristics performed similarly to

(and in one case better than) the Saturate Greedy algorithm. Notice, however, that when selecting

just k seeds, Saturate Greedy did perform best (though only by a small margin) among the three

algorithms. This suggests that keeping robustness in mind may be more crucial when the algorithm

does not get to compensate with a larger number of seeds.

Results: Visualization. To further illustrate the tradeoffs between robust and non-robust opti-

mization, we visualized the seeds selected by Saturate Greedy (robust seeds) compared to seeds

selected non-robustly based on only one diffusion setting. For legibility, we focus here only on the

Twitter250 data set, and only plot 4 out of the 5 networks. (The fifth network is very sparse, and

thus not particularly interesting.)

Figure 4 compares the seeds selected by Saturate Greedy with those (approximately) maximiz-

ing the influence for the Iran network. Notice that Saturate Greedy focused mostly (though not

exclusively) on the densely connected core of the network (at the center), while the Iran-specific

optimization also exploits the dense regions on the left and at the bottom. These regions are much

less densely connected in the US politics and Climate networks, while the core remains fairly

densely connected, leading the Saturate Greedy solution to be somewhat more robust.
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Fig. 3. Performance of the algorithms on the four topical/temporal datasets. The x-axis is the number of

seeds selected, and the y-axis the resulting robust influence (compared to seed sets of size k).

Similarly, Figure 5 compares the Saturate Greedy seeds (which are the same as in Figure 4)

with seeds for the Climate network. The trend here is exactly the opposite. The seeds selected based

only on the Climate network are exclusively in the core, because the other parts of the Climate

network are barely connected. On the other hand, the robust solution picked a few seeds from the

clusters at the bottom, left, and right, which are present in other networks. These seeds led to extra

influence in those networks, and thus more robustness.

6.3.2 Different Diffusion Models. In choosing a diffusion model, there is little convincing em-

pirical work guiding the choice of a model class (such as CIC, DIC, or threshold models) or of

distributional assumptions for model parameters (such as edge delay). A possible solution is to

optimize robustly with respect to these different possible choices.

In this section, we report on an evaluation of such an approach. Specifically, we performed two

experiments: (1) learning the CIC influence network under different parametric assumptions about

the delay distribution, and (2) learning the influence network under different models of influence

(CIC, DIC, DLT). We again used the MemeTracker dataset, restricting ourselves to the data from

August 2008 and the 500 most active users. We used theMultiTree algorithm of Gomez-Rodriguez

et al. [26] to infer the diffusion network from the observed cascades. This algorithm requires a

parametric assumption for the edge delay distribution. We inferred ten different networks Gi
corresponding to the Exponential distribution with parameters 0.05, 0.1, 0.2, 0.5, 1.0, and to the
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(a) Iran (b) Haiti

(c) US politics (d) Climate

Fig. 4. Saturate Greedy vs. Iran graph seed nodes. Green/pentagon nodes were selected by both; or-

ange/triangle nodes were selected by Saturate Greedy only; purple/square nodes for Iran only.

Rayleigh distribution with parameters 0.5, 1, 2, 3, 4. The length of the observation window was set

to 1.0.

We then used the three algorithms to perform robust influence maximization for k = 10 seeds,

again allowing the algorithms to exceed the target number of vertices. The influence model for

each graph is the CIC model with the same parameters that were used to infer the graphs.

The performance of the algorithms is shown in Figure 6(a). All methods achieved satisfactory

results in the experiment; this is again due to high similarity between the different diffusion settings

inferred with different parameters.

For the second experiment, we investigated the robustness across different classes of diffusion

models. We constructed three instances of the DIC, DLT and CIC model from the ground truth

diffusion network between the 500 active users. For the DIC model, we set the activation probability

uniformly to 0.1. For the DLT model, we followed [34] and set the edge weights to 1/dv where dv
is the in-degree of node v . For the CIC model, we used an exponential distribution with parameter
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(a) Iran (b) Haiti

(c) US politics (d) Climate

Fig. 5. Saturate Greedy vs. Climate graph seed nodes. Green/pentagon nodes were selected by both; or-

ange/triangle nodes were selected by Saturate Greedy only; purple/square nodes for Climate only.

0.1 and an observation window of length 1.0. We performed robust influence maximization for

k = 10 seeds and again allowed the algorithms to exceed the target number of seeds.

The results are shown in Figure 6(b). Similarly to the case of different estimated parameters,

all methods achieved satisfactory results in the experiment due to the high similarity between

the diffusion models. Our results raise the intriguing question of which types of networks would

be prone to significant differences in algorithmic performance based on which model is used for

network estimation.

6.3.3 Networks sampled from the Perturbation Interval model. To investigate the performance

when model parameters can only be placed inside “confidence intervals” (i.e., the Perturbation In-

terval model), we carried out experiments under two networks, MemeTracker-DIC and STOCFOCS

(introduced in Section 5.3.2).

Following the approach in Section 5, for both networks, we assigned “confidence intervals”

Ie = [(1 − q)θe , (1 + q)θe ], where the θe are the inferred activation probabilities. Whenever (1 −
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q)θe > 1, we truncated its value to 1. For experiments on the MemeTracker-DIC network, we set

q ∈ {10%, 20%, 30%, . . . , 100%}, while we used a coarser grid for the experiments on the large graph

STOCFOCS, with q ∈ {5%, 10%, 20%, 50%, 100%}.
While Lemma 6.2 guarantees that the worst-case instances have activation probabilities (1−q)θe

or (1+q)θe , this still leaves 2
|E |

candidate functions, too many to include. We generated an instance

for our experiments by sampling 10 of these functions uniformly, i.e., by independently making

each edge’s activation probability either (1 − q)θe or (1 + q)θe . This collection was augmented by

two more instances: one where all edge probabilities are (1 − q)θe , and one where all probabilities

are (1 + q)θe . Notice that with the inclusion of these two instances, the All Greedy heuristic

generalizes the LUGreedy algorithm by Chen et al. [13], but might provide strictly better solutions

on the selected instances because it explicitly considers those additional instances. The algorithms

got to select 20 seed nodes; note that in these experiments, we were not considering a bicriteria

approximation.
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(a) Different Distributions.
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(b) Different Models

Fig. 6. Performance of the algorithms (a) under different delay distributions following the CIC model, and (b)

under different classes of diffusion models. The x-axis shows the number of seeds selected, and k = 10.

The results are shown in Figures 7(a) and 7(b). Contrary to the previous results, when there

was a lot of uncertainty about the edge parameters (relative interval size 100% in both networks),

the Saturate Greedy algorithm more clearly outperformed the Single Greedy and All Greedy

heuristics. Thus, robust optimization does appear to become necessary when there is a lot of

uncertainty about the model’s parameters.

Notice that the evaluation of the algorithms’ seed sets was performed only with respect to the

sampled influence functions, not with respect to all 2
|E |

functions. Whether one can efficiently

identify a worst-case parameter setting for a given seed set S is an intriguing open question. Absent

this ability, we cannot efficiently guarantee that the solutions are actually good with respect to all

parameter settings.

6.3.4 Scalability. To evaluate the scalability of the algorithms, we departed from real-world

data sets in order to obtain a controlled environment. We generated networks using the Kronecker

graph model [40]: specifically, we generated Erdős-Rényi networks, core-peripheral networks and

networks with hierarchical community structure. For each type, we generated a set of 5, 10, 15, 20, 25
networks of sizes 128, 256, . . . , 4096. We used the DIC model with activation probability set to 0.1,
and selected k = 50 nodes. The running times of the three algorithms are shown in Figure 8 and

Figure 9. In Figure 8, we fixed the number of networks to five and varied the size of each network;
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(a) Perturbation Interval model: MemeTracker (k = 20)
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Fig. 7. Performance of the algorithms under networks sampled from the Perturbation Interval model: (a)

MemeTracker-DIC network; (b) STOCFOCS network. (The x axis shows the (relative) size of the perturbation

interval Ie ).

in Figure 9, we fixed the size of the networks to 1024 and varied the number of networks. The

graphs show that the heuristics are faster than the Saturate Greedy algorithm by about a factor of

ten, but all three algorithms scale linearly both in the size of the graph and the number of networks,

due to the fast influence estimation method.

7 CONCLUSION AND FUTUREWORK
In this work, we began a study of the stability of Influence Maximization when the input data are

adversarially noisy. We showed that estimating the susceptibility of an instance to perturbations can

be cast as an Influence Difference Maximization problem. Unfortunately, the Influence Difference

Maximization problem under the Independent Cascade model is as hard to approximate as the

Independent Set problem. Thus, we empirically evaluated the stability of Influence Maximization

instances on different synthetic and real-world networks under different diffusion models and diffu-

sion settings. As a general result from the experiments, caution is advised in using the algorithmic

result of Influence Maximization when there is a large amount of noise (with relative error of 20%).

Given the hardness of the Influence Difference Maximization problem, we then designed an

efficient algorithm for Robust Influence Maximization to find influential users robustly across

multiple diffusion settings. We carried out a theoretical analysis on the hardness of the Robust

Influence Maximization problem and proved an approximation guarantee for our algorithm.

An interesting unresolved question is whether one can efficiently find an (approximately) worst-

case influence function in the Perturbation Interval model. This would allow us to empirically

evaluate the performance of natural heuristics for the Perturbation Interval model, such as randomly

sampling a small number of influence functions. Furthermore, it would allow us to design “constraint

generation” style algorithms for the Perturbation Interval model in the style of the algorithm of

Chen et al. [11].

In the context of the bigger agenda, one could conceive of other notions of robustness in Influence

Maximization, perhaps tracing a finer line between worst-case and Bayesian models. Also, much

more research is needed into identifying which influence models best capture the behavior of real-

world cascades, and under what circumstances. It is quite likely that different models will perform

differently depending on the type of cascade and many other factors, and in-depth evaluations
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Fig. 8. Running times on Kronecker graph networks with different structures. The x axis represents the

number of nodes, and the y-axis is the running time in seconds, both plotted on a log scale.

of the models could give practitioners more guidance on which mathematical models to choose.

While our model of robustness allows us to combine instances of different models (e.g., IC and LT),

this may come at a cost of decreased performance for each of the models individually. Thus, it

remains an important task to identify the influence models that best fit real-world data.
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