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Many network problems are based on fundamental relationships involving time.
Consider, for example, the problems of modeling the flow of information through
a distributed network, studying the spread of a disease through a population, or
analyzing the reachability properties of an airline timetable. In such settings, a
natural model is that of a graph in which each edge is annotated with a time label
specifying the time at which its endpoints “communicated.” We will call such a
graph a temporal network. To model the notion that information in such a network
“flows” only on paths whose labels respect the ordering of time, we call a path
time-respecting if the time labels on its edges are non-decreasing.

The central motivation for our work is the following question: how do the basic
combinatorial and algorithmic properties of graphs change when we impose this
additional temporal condition? The notion of a path is intrinsic to many of the most
fundamental algorithmic problems on graphs; spanning trees, connectivity, flows,
and cuts are some examples. When we focus on time-respecting paths in place of
arbitrary paths, many of these problems acquire a character that is different from the
traditional setting, but very rich in its own right.

We provide results on two types of problems for temporal networks. First,
we consider connectivity problems, in which we seek disjoint time-respecting paths
between pairs of nodes. The natural analogue of Menger’s Theorem for node-disjoint
paths fails in general for time-respecting paths; we give a non-trivial characterization
of those graphs for which the theorem does hold in terms of an excluded subdivision
theorem, and provide a polynomial-time algorithm for connectivity on this class
of graphs. (The problem on general graphs is NP-complete.) We then define and
study the class of inference problems, in which we seek to reconstruct a partially
specified time labeling of a network in a manner consistent with an observed history
of information flow.
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1. INTRODUCTION
In a variety of settings, one encounters problems that are best modeled using a network

with an explicit time-ordering on its edges. Although diverse in motivation, such problems
involve a number of common themes, as indicated by the following examples.

Communication in distributed networks. As agents in a distributed network commu-
nicate over time, information flows in complex ways. Gossip protocols in distributed
systems, for example, are based on the dissemination of information through a network
using node-to-node transmissions [6, 11, 17, 18]. Suppose we are given a network in which
nodes have been communicating for a period of time with their neighbors; each edge is
labeled by the time(s) at which its endpoints exchanged information. Information “flows”
along a path

�
in this network only if the time labels on the edges of

�
are monotonically

non-decreasing; thus, such time-respecting paths are crucial structures in understanding the
way in which information has disseminated through the network.

Epidemiology. The study of epidemics — the spread of infectious diseases — is a well-
developed area of applied mathematics [1]. If we picture a network of individuals coming
into contact with one another, there is a natural analogy to the previous setting; and indeed,
this analogy has been exploited in the design of protocols for distributed systems [6, 18].
Thus, the spread of a disease (or a computer virus, or a rumor) can be investigated by
studying the time-respecting paths in a network.

Scheduled Transportation Networks. Finally, many of the same issues arise in the
context of scheduled transportation, such as airline travel [4]. We may be given a network
of airports, with edges labeled by the time(s) at which flights depart and arrive; the time-
respecting paths are those that can be feasibly used by a traveler in this network.

Formally, we say that a temporal network is an undirected graph ���	��
����� in which
each edge � is annotated with a time label ������� specifying the time at which its two endpoints
“communicated.” Thus, one can view a temporal network as the pair ��������� , where � is a
function from the edge set to the real numbers; we refer to � as a time labeling of � . A path�

in � is called time-respecting if the labels on its edges are non-decreasing.
�

is strictly
time-respecting if the labels on its edges are increasing. In this paper, we will only consider
time-respecting paths, but most of the results hold for strictly time-respecting paths as well
(with one notable exception mentioned in section 6), with only minor modifications of the
proofs. Considering time-respecting paths has the advantage that any problem on unlabeled
graphs can be reduced to a problem on temporal networks simply by giving all edges the
same label.

Our definition is simple but robust; by the use of direct “gadget” reductions, we can
model many other natural types of temporal labelings. For example, in Section 2, we
show how to encode a model in which the graph is directed and each edge has separate
“departure” and “arrival” times.

The central motivation for our work is the following question: how do the basic com-
binatorial and algorithmic properties of graphs change when we impose this additional
temporal condition? The notion of a path is intrinsic to many of the most fundamental
algorithmic problems on graphs; spanning trees, connectivity, flows, and cuts are some
examples. When we focus on time-respecting paths in place of arbitrary paths, many of
these problems acquire a character that is different from the traditional setting, but very rich
in its own right. In particular, we provide results on two types of problems for temporal
networks: connectivity problems, in which we seek disjoint time-respecting paths between
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pairs of nodes; and inference problems, in which we seek to reconstruct a partially specified
time labeling of a network in a manner consistent with an observed history of information
flow. We describe these in detail below.

Background.. There is a large literature on gossiping and broadcasting algorithms in
networks; see [11] for a survey. Two paradigmatic problems in this area are (i) the
Telephone Problem [2, 5, 8, 10, 20], in which we seek a way for � individuals to each
transmit a distinct piece of information to everyone else using the minimum number of
person-to-person phone calls; and (ii) the Minimum Broadcast Time (see [3, 17] and the
references therein), in which we seek a way for a designated source node in a graph to
transmit a piece of information to all other nodes in the minimum number of parallel
rounds of node-to-node communication. Note the fundamental difference between this
body of work and the types of problems we will be considering. In designing a gossiping
or broadcasting algorithm, one seeks to schedule the times at which information crosses
edges of a network so as to optimize a particular objective function. In the present work,
we are given the times at which communication has occurred, and study properties of the
full history of this communication. Thus, our analysis has a more “diagnostic” character.

The concept of a time-respecting path is implicitly present in much of the work on
gossiping and broadcasting, since both are concerned with information flow over time. To
our knowledge, time-respecting paths in graphs were considered explicitly for the first time
by Göbel et al. [8], who investigated labelings of graphs in which there is a strictly time-
respecting path between every pair of vertices. In particular, they sought to characterize the
graphs that admit this type of labeling. Such a labeling induces a scheme for gossiping and
vice versa; the authors used the model as an abstract formulation of the gossiping problem
on a graph. An essentially equivalent network model was proposed recently by Berman
[4], and termed scheduled networks: directed networks in which each edge has separate
departure and arrival times. As mentioned above, this model can be encoded within our
model of temporal networks. Berman gave an algorithm to compute all nodes and edges
reachable from a given root by time-respecting paths, and showed that the max-flow min-
cut theorem holds, with unit capacities, for time-respecting paths. Both of these problems
can be reduced to equivalent problems on standard directed graphs (with no time labels),
and in particular, the max-flow min-cut result follows from this reduction; the concern in
[4] was with finding algorithms that were more efficient than the reduction would allow.

The Present Work: Connectivity Problems.. A common question in the analysis of
gossip protocols is the following. Suppose that a node � has learned a piece of information
originally possessed by a node � . If we are concerned that some nodes may be faulty
and corrupt information, we can ask: for some value of � , are there � (internally) node-
disjoint time-respecting paths from � to � ? If this is the case, we can be more confident in
the accuracy of the information � has learned, since it came along several “independent”
trajectories through the network [16, 18]. In standard graphs, the existence of node-disjoint
paths is characterized by Menger’s Theorem [15]: the maximum number of node-disjoint� - � paths is equal to the minimum number of nodes needed to separate � from � . But there
is no analogue of this theorem for arbitrary temporal networks. As observed in [4], the
maximum number of node-disjoint time-respecting paths from � to � can be strictly less
than the minimum number of nodes whose deletion leaves no time-respecting � - � path.

The breakdown of a Menger-like theorem can be observed quite simply on the graph�
depicted in Figure 1, with the indicated time labeling. There are no two disjoint time-
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respecting paths from �! " to �# $ , but after deleting any one node (other than �% " or �# $ ),
there still remains a time-respecting �! " - �# $ path. Despite this counter-example, we can ask:
for which graphs does the analogue of Menger’s Theorem hold, under all time labelings?
Specifically, let us say that a graph �&�'��
����� is Mengerian if for all time labelings�)(*�,+.- and all �/�0�21)
 , the maximum number of node-disjoint time-respecting paths
from � to � equals the minimum number of nodes whose deletion leaves no time-respecting� - � path. Understanding this property can provide insight into the relation between disjoint
paths and node separators in temporal networks.
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FIG. 1. The graph 6 with the labeling 7 4
We provide a precise characterization of Mengerian graphs: an arbitrary graph � is

Mengerian if and only if it does not contain a subdivision of
�

. Thus, the Mengerian
property has a characterization in the spirit of Kuratowski’s Theorem expressing planarity
in terms of excluded subdivisions [13];

�
is in a sense the unique “obstacle” to the property.

As a consequence of our proof of this theorem, we develop a polynomial-time algorithm
to find the maximum number of disjoint time-respecting paths between a given source and
sink in a time-labeled Mengerian graph. In general, however, it is NP-hard to determine the
maximum number of node-disjoint time-respecting paths or the minimum separator size.
These and other related complexity results are proved in section 4.

The Present Work: Inference Problems.. A different type of problem arises when we
have a temporal network with only partial information about the time labeling, and we seek
to infer values of time labels based on additional data. For example, we may believe that
communication has taken place in a network in such a way that a certain set 8 of nodes
has learned a certain piece of information; we wish to test the feasibility of this hypothesis
by reconstructing a history for the communication in which each node in 8 receives the
information along a time-respecting path.

A general statement of this problem looks as follows. Suppose we are given a graph���	��
����� , and each edge � is labeled with an interval 9;: ; the meaning is that we know
communication took place on edge � at some time in the interval 9 : , but we do not know
exactly when. (Note that setting 9<: to be a single point indicates precise knowledge of the
time of communication.) We are also given a root node = , a set

�?> 
A@CBD=*E of positive
nodes, and a disjoint set F > 
G@HBD=*E of negative nodes. We are told that the nodes in

�
learned a piece of information originating at = , and that the nodes in F did not learn this
information. We are given no information about nodes in 
I@C� �KJ F)� . The problem is:

Does there exist a time labeling � with �������21L9 : for each � (i.e. consistent with the partial
data), such that there is a time-respecting path from = to each node in

�
, and there is no

time-respecting path from = to any node in F ?
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We will call this the problem of Reachability Inference, and give a polynomial-time algo-
rithm for Reachability Inference on temporal networks in section 5.

2. PRELIMINARIES

Scheduled Networks.. We begin by illustrating a reduction of Berman’s scheduled
network model [4] to our model. Suppose we have a directed graph �NM in which each edge� has two time labels: a departure time �POQ����� , and a larger arrival time ��RS�����HTU�VOQ����� .
Since the edge thus causes a delay of ��RS���W�XY�VOQ����� , we will refer to such an edge as a
delay edge. A path

�
in this model is time-respecting if, for consecutive edges � and �/M

on
�

, we have ��RS�����2ZI�VO[���WM\� . We may view this as modeling the schedule of an airline
flight along this edge, for example, or the beginning and end of a file transfer from one
process to another.

We model �]M with a temporal network � as follows. For each edge �H�^��_����`� of � , we
construct two undirected edges �*O)�^��_���ab:D� and �WRc�,�daS:W���`� , where aS: is a new vertex.
We define �����*Oe�C�f�VOQ����� and �����WR�C�g�hRb����� . It is easy to verify that a path between
two nodes in �]M is time-respecting if and only if the corresponding path between the two
nodes in � is time-respecting. The construction also preserves the disjointness of paths.
We will occasionally use delay edges in our constructions, meaning in fact the replacement
described above.

A Reduction to Standard Directed Graphs.. We also mention a construction that turns
certain basic questions about temporal networks into questions about standard directed
graphs. In particular, it implies a min-max theorem for edge-disjoint time-respecting paths
[4].

Given a temporal network �	�?��
����� , we first convert it into an equivalent “directed
temporal network” �]M in a standard way; by a directed temporal network, we mean a
directed graph with a single time label on each edge, and we define the notion of a “time-
respecting directed path” in the obvious fashion. To convert � to �NM , each undirected edge�C�^�d���0aH�S1i� with label �P���W� is replaced by two new vertices j : and k : and directed edges�d���0jl:D� , ��k/:;�0�#� , ��j�:W��k/:m� , ��a]�0jl:D� , ��k/:;�0aC� with labels �P����� . This construction ensures that
edge � is available for use in either direction, but cannot be used in both directions (by one
or more paths) without violating disjointness. We let n map path

� �o� " � " �qprDrDr��Ws O " �5s
in � to path nt� � ��K� " jl:0umk*:0uv� p r<rDr�j�:xwmy u k/:xwmy u � s in �zM . Then, paths nt� � � and nt� � M\� are
edge-disjoint if and only if

�
and

� M are.
From the directed temporal network �]M , we now build an (unlabeled) directed graph ��M M

as follows. For each edge � of �]M , we create two vertices _{: and aS: , and a directed edge�d_ : �0a : � . Also, if � and | are edges of ��M , represented by directed edges ��_ : ��a : � and�d_{}%�0aS}/� in �zM M , we add an edge �da~:W�0_{}*� if there is a time-respecting directed path that
uses � immediately followed by | . An example of this construction is shown in Figure 2.
Let n{M map path

� �A� " � p r<rDr0� s in �zM to path n{M�� � �2�U_l:�uvaS:0uv_{:��Dab:x�trDr<r0_{:xw;aS:xw in �zM M .
Again, paths nVM�� � � and n{M�� � M\� are edge-disjoint if and only if

�
and

� M are.
Now, it is easy to verify that reachability in � under time-respecting paths corresponds

naturally to reachability in ��M M . The mapping nVMh�Hn preserves edge-disjointness. For a
set � > �����]� of edges, we define �V���]�S�	���d_����W��� �m�x�v�0�`���;�m� �v�0�x�b���]1���� . Then, � is an
edge separator (with respect to time-respecting paths) in � if and only if �V���]� is an edge
separator (with respect to ordinary paths) in ��M M . Also, there is always a minimum size
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FIG. 2. A vertex � and its replacement. �/� and ��  are short for �5¡�¢ and �P¡�£ . The edges are ¤v�%¥§¦�¨q��©��<ª
or ¤� ¥)¦���©�«0 <ª

edge separator in �]M M that is of the form �V���]� for some � > �����]� . That is, the size of
minimum edge separators is invariant under the above reduction to unlabeled graphs.

Using breadth-first search in ��M M we can answer questions like, “Starting at node _ at
time � , how early can node � be reached using a time-respecting path?” Moreover, if we
add a super-source and super-sink to ��M M , the max-flow min-cut theorem for (unlabeled)
directed graphs implies

¬!®l¯#®{°m±³²%±\®l´¶µh·\¸º¹
Berman [4]). For a temporal network � with nodes � and � , the

maximum number of edge-disjoint time-respecting paths from � to � is equal to the minimum
number of edges whose deletion leaves no time-respecting � - � path.

However, the above reduction does not imply anything about node-disjoint paths; and it
is clear that there is no simple relation between temporal networks and standard directed
graphs preserving the notion of node-disjointness, given that the Mengerian property for
temporal networks has a non-trivial characterization. The reduction is also not useful
for reasoning about inference problems, since one can only construct the directed graph
associated with a temporal network � given the labeling of the edges of � .

3. CONNECTIVITY PROBLEMS AND MENGERIAN GRAPHS
Given a temporal network with underlying graph �»�f��
���N� and time labeling � , and

two nodes �5���¼1o
 , we say that a collection of time-respecting � - � paths is internally
node-disjoint (or simply node-disjoint, by slight abuse of terminology) if the paths share
no nodes other than � and � . We use ½{¾ � ¿ ���/�0�0� to denote the maximum cardinality of such
a collection. A set 8 > ��
À@QBW�/���vE;� J � is called an � - � separator (or � - � vertex-separator



TEMPORAL NETWORKS 7

or cut-set) with respect to � , if it meets every time-respecting � - � path in an edge or vertex.5

The minimum size of any � - � separator with respect to � is denoted by ÁW¾ � ¿ ���/�0�0� .
In the introduction, we discussed the temporal network in Figure 1, with underlying

graph
�

and the indicated time labeling; it has ½  � ¿ �d�# " �0�# $ �Q�,Â , but Á  � ¿ ���` " �0�# $ �[�ÄÃ .
This is in sharp contrast to the statement of Menger’s Theorem, which shows that these
two quantities are equal for all unlabeled graphs (or equivalently, for all graphs in which��������KÅ for all � ). We can in fact generalize this example to provide a family of temporal
networks B � sA(/�Æ�UÃ#��Ç!�Dr<rDrÈE with labeling ��s and nodes �/�0� for which ½  w � ¿ w ���/���0��oÂ ,
but Á  w � ¿ w#���/�0�0�É�U� . The graph

� s has ÊË���#Ì;� nodes, indicating a gap of ÍÎ��� 
�� "�Ï Ì;� between
the maximum number of disjoint paths and the minimum size of a vertex-separator in the
worst case.

Ð Ñ

�
�

wly u
Ò

w#Ó u

� w�y �
� wly u

Ô Ô Ô
Ô Ô Ô

Ô
ÕÕÕ

ÕÕÕ
Õ

1

3

2k-3

2k-1 k

k+2

3k-4

3k-2

FIG. 3. Skeleton of the graph 6�Ö with the labeling 7/Ö
For the general idea underlying this construction, reconsider the three vertices �� ×�0�# p ���` Ì

in Figure 1, which from now on — in a slight abuse of terminology — shall be called the
inner vertices. Every time-respecting �  " - �  $ path has to visit at least two inner vertices,
ensuring that there can be no two disjoint paths. On the other hand, there is a time-respecting�# " - �` $ path through any set of Ã inner vertices, so that any �% " - �# $ separator must have size
at least Ã .

We generalize this idea to a graph with Ã5�ÎX¶Â inner vertices, and label the edges so that
every time-respecting � - � path visits at least � of these vertices (ensuring again that there are
no two disjoint � - � paths). On the other hand, we make sure that there is a time-respecting� - � path through any set of � inner vertices, so every � - � separator must have size at least � .

The graph with Ã5�bXØÂ inner vertices will be denoted by
� s , and produce a gap of � . The

skeleton of the graph
� s , consisting of the vertices � , � , and the inner vertices, is depicted

in Figure 3. The inner vertices are labeled Â/�Dr<rDrÙ�vÃ5�NXÀÂ . Vertices Â5�Dr<rDrÙ�v� are connected
to � with edges labeled �ls#�0���5��Úx�0��UÃ�Ú�XÛÂ , vertices �l�<rDrDrD��Ã5�NXÜÂ to � with edges labeled� s �0��Ú����0�0��UÃ�ÚPXc� .

Between any pair of inner vertices �ÞÝYa , we add � delay edges with labels �d����Ã�aØX��2XÂ;�Ù�<���bßYÂ5�vÃ�aàXL�#�m�<rDrDr<�<���bß§�ÎXcÂ5�vÃ�aàXL�Sß§�CX)Ã5� . With these labelings of delay edges,
we want to ensure that the arrival time of a path at an inner vertex reflects the number of

á
The inclusion of edges is only necessary in the special case that there is an edge ¦³âÙ©�ã�ª in ä . In all other cases,

we could simply include one of the endpoints of an edge ¤ instead of ¤ itself.
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inner vertices visited so far. Specifically, a path can arrive at vertex � at time � only if it has
visited Ã��bXÞ� vertices. As delay edges are implemented by auxiliary vertices, the resulting
graph is still simple. The important properties of the resulting graph åQs and labeling �ls
are summarized in the following lemma:æ�ç#è2èQé§ê�·\¸`· Á  w � ¿ w`���5���0��I� , and ½  w � ¿ w`���/���0��oÂ .

Proof. To prove that Á  w � ¿ w#���/�0�0�Æëg� , one considers any separator 8 of size smaller
than � , and verifies that any path

�
visiting at least � of the other vertices in ascending

order and always taking the earliest possible delay edge is indeed time-respecting. Let� " ÝÜ� p ÝArDr<r%ÝÀ� s be � vertices not in 8 . Notice that � " ZI� , and � s ëK� by the Pigeon
Hole Principle. We will establish that path

�
as described above reaches node �*ì at timeÃ�� ì XØÚ .

In the base case Út�,Â , this is obvious since the edge ���/�0� " � is labeled Ãq� " XÀÂ . For the
inductive step, notice that because � ì X¼Ú[ÝÀ� (again by the Pigeon Hole Principle), there is
a delay edge from �5ì to �qì R " labeled ���qì`ßY���qì!X�Úx�m�vÃ��qì R " X��qì*ßY�d�qìhX¼Úx�lXcÂW� , i.e. labeled��Ãq� ì XíÚv��Ã�� ì R " XY��ÚhßÜÂ;��� , so path

�
arrives at node � ì R " at time Ã�� ì R " XY��ÚhßÜÂ;� . Finally,

since
�

arrives at node � s at time Ã�� s XØ� , it can use the edge �d� s ���0� labeled Ã�� s X§� , and
therefore,

�
is a time-respecting � - � path.

Since deleting vertices Â/�Dr<rDrÙ�v� disconnects � from � , we also know that Á  w � ¿ w`���5���0�2ZÜ� .
To prove that ½  w � ¿ w ���5���0�QZUÂ , we show that every time-respecting � - � path visits at least� inner vertices. The key property is that a time-respecting � - � path reaching the inner

vertex � at time � or earlier must visit at least Ã��ËX§� inner vertices including � . Any � - �
path must use an edge from some vertex �iZÀ�ÞZIÃ/�ËXÛÂ to � labeled ���0���h���0�0�2�AÃ���Xà� .
To use that edge, the path must reach vertex � at time �LZIÃq��Xà� , and hence visit at leastÃ���XÜ��Ã���Xà�!�É�U� inner vertices.

It remains to prove the above key property by induction on � . In the base case �i�îÂ ,
the only time-respecting � - Â path is the edge ���/�DÂ;� labeled �{s%�0���5�<Â;���É�oÂ , so the invariant
holds trivially (remember that the delay edges can be thought of as directed, so Â cannot be
reached through any delay edges).

For the inductive step, let
�

be a time-respecting � - ���zßIÂ;� path reaching �zßIÂ at time� . Let a be the last inner vertex visited before �~ßÛÂ on
�

, and �;ï the time at which it was
visited. Then, � ï ZÀ� , and a,ZÀ� . For if a,TÀ�zßIÂ , the path from a to �]ßKÂ cannot be
time-respecting. It would either have to lead through � or � (and both Ã�aUXIÂ�T^Ã���ßUÂ
and Ã�aàXL�ÞTKÃ��2ßØÃQXL� ), or use a delay edge, which we know to be directed the opposite
way through the labeling.

Therefore, we can apply the induction hypothesis to a , and obtain that
�

must visit at leastÃ�aËXS� ï inner vertices between � and a , i.e.
�

visits at least ÃqaNXS� ï ßËÂ inner vertices includ-
ing ��ß�Â . Because

�
was simple, it must use a delay edge to get from a to ��ßÆÂ , and from the

labeling of the delay edges, we obtain that ��ëÜÃ!����ß�Â;�;XCaËXËÂ/ß]�;ïSXCaG�GÃq�VXÎÃqa�ßÆÂ/ß]�Dï .
Solving for �<ï yields �DïàZKÃ�azßH�VX~Ã���XzÂ , and

�
must visit at least Ã�aNXb�<ï�ßNÂzëÜÃqa�X~ÃqaÎßÃ��]ßGÂ~Xc�ËßUÂ]�^Ã%�d�]ßIÂW�tXà� inner vertices including �]ßGÂ , completing the inductive

proof.ð ®l!®{ñ�ñWé�qòÛê�·\¸`·
The graphs

� s have an ÊË�Vóô �P� gap between the maximum number
of disjoint time-respecting � - � paths and the minimum size of an � - � separator.
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In the notation above, we can say that a graph � is Mengerian if ½ ¾ � ¿ ���5���0��GÁ ¾ � ¿ ���/�0�0�
for all time labelings �L(5�,+'- and all �/���[1í
 . Our next goal in this section is to prove
the following theorem characterizing Mengerian graphs. We first recall two definitions
from graph theory. We say that a graph õØM is a subdivision of a graph õ if õ)M can be
obtained from õ by replacing each edge with a chain of degree-2 vertices. We say that �
contains õ as a topological minor if it contains a subgraph isomorphic to a subdivision ofõ .öS÷ ç`®lhç#èoêh·\¸`· �ø�ù��
���N� is Mengerian if and only if it does not contain

�
as a

topological minor.

The “only if” direction is easier:æ�ç#è2èQé§ê�·úµh·
If � contains

�
as a topological minor then � is not Mengerian.

Proof. Given a graph � containing
�

as a topological minor, we can use the subdivision
of
�

to label the edges of � , and choose � and � , so that ½ ¾ � ¿ ���5���0�QÝÜÁ ¾ � ¿ ���/�0�0� . Specifically,
fix a subgraph õ of � isomorphic to a subdivision of

�
. We define � to be the node

representing �! " in õ , and � to be the node representing �! $ in õ . Each edge of �
lying on a path in õ that corresponds to an edge � of

�
will receive the label that �

is assigned in Figure 1. All other edges entering � receive the label Å , and all other
edges that do not enter � receive the label û . (If there is an edge joining � and � in� , it can be labeled arbitrarily). It is then easy to verify that ½ ¾ � ¿ ���/�0�0�bÝÜÁ ¾ � ¿ ���5���0� .

The harder statement here is the “if” direction, which we prove by induction on the
number of edges of � . We begin with some lemmas that facilitate the proof. First, if the
maximum degree of � is Ç , then a set of paths is internally node-disjoint if and only if it is
edge-disjoint; applying Proposition 2.1, we haveæ�ç#è2èQé§ê�·üê�·

Let � be a graph such that the degree of none of its vertices exceeds Ç .
Then � is Mengerian.

Now, if � contains a cut-node � (a vertex whose deletion disconnects it), then one can
show that � is Mengerian if and only if each of its two-connected components is. This
provides an easy way to apply induction when � is not two-connected.æ�ç#è2èQé§ê�·Èýl·

Let � be a non-Mengerian graph that is not two-connected. Then �
contains a proper subgraph that is non-Mengerian.

Proof. Suppose � is non-Mengerian, and consider a labeling � and a choice of �
and � that violate the Mengerian property. Then � and � must lie in the same two-
connected component þ of � ; for otherwise, they are separated by a single vertex, and
we cannot have ½ ¾ � ¿ ���/�0�0�ÜÝÿÁ ¾ � ¿ ���/�0�0� . But now one can verify that the subgraphþ must also be non-Mengerian, as no simple � - � path can visit nodes outside of þ .

We now develop a structural property of graphs that do not contain a subdivision of
�

.
Given a two-connected graph �	�?��
���N� , two vertices ���0a	1Y
 , and a natural number� ëAÂ , we say that � is �d���0a�� � � -separable if
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(i) � and a each have degree
�
.

(ii) Either �o@zB<���0azE consists of
�

connected components; or �A@]B;�h��azE consists of� XÜÂ connected components, and �d���0aC� is an edge of � .

3

�

� � � � � � � � ����������� ���
� � � � � � � � � �
� � � � � � � � �	�

FIG. 4. The form of a ¦���©��[©�
Dª -separable graph

Figure 4 depicts a �d���0a]� � � -separable graph; we will refer to the subgraphs induced on
the connected components of �L@PB<���0azE as the lobes of � , and denote them by � " �Dr<rDrÙ���� .
We use ��ì (resp. |qì ) to denote the edge from � (resp. a ) into ��ì ; note that one of the �]ì
may be empty, in the case that ���h��aH�21L� , and then we have � ì �G| ì .æ�ç#è2èQé§ê�·��h·

Let � be a two-connected graph with at least one vertex of degree at least�
. Then � contains

�
as a topological minor, or there are ���0a^1§
 and a number

� ë �
so that � is �d���0a�� � � -separable.

Proof. Let � be a vertex of degree
� ë � , and � " �<rDr<rx��� be its neighbors. Consider the

graph �Y@2BD�%E , the result of deleting � and all its incident edges. As � was two-connected,� " �<rDr<rD�0��� are still connected in �à@B<�hE . Let � be any inclusion-wise minimal Steiner tree
spanning � " �DrDr<rD����� in �À@~B;�%E .

If no vertex in � has degree exceeding Ã , then � is a path. Let �*ì��0���5�0�5s#�0��� be the first
four vertices from � " �<rDr<rD�0��� appearing on � . Then, � contains

�
as a topological minor,

with �5ì0�����5�0�5s`����� as the images of �# " �0�# p �0�# Ì ���` $ .
Otherwise, let a be any vertex of degree

� ïYëÜÇ in � . Each of the
� ï subtrees rooted ata must contain at least one of B;� " �<rDr<rD�0���5EQ@HB<azE ( a might be identical to one of the � ì ),

because otherwise, that subtree could be deleted and � would not be minimal.
If any subtree contains two vertices � ì �0� � ��Ú����� , let � s �0� � �v������ be two vertices in

different subtrees (there must be at least three subtrees). Then � contains
�

as a topological
minor. For either one of � ì �0� � lies on the path from a to the other — say, � ì lies on a – � �
— in which case we obtain

�
by mapping �d�  �0�  " ���  p �0�  Ì �0�  $ � to ���h��� s �0a��0� ì �0� � � (and

the edge �d�# S�0�# p � to the path � – � � – a ). Or there must be a last vertex aCM that is common to
the paths a – � ì and a – � � , in which case we map �d�! S�0�# " �0�# p ���` Ì �0�# $ � to �d���0� s ��a]�0a~M���� ì �
(and the edges ���# b���` p � and ���# b�0�# Ì � to the paths � – ��� – a and � – ��� – a~M , respectively).

From now on, we may assume that each subtree rooted at a contains exactly one vertex�qì , so the subtrees are in fact paths, i.e. � consists of disjoint paths
� " �<rDr<rD� � � from a

to � " �<rDrDr<�0��� , respectively. In the case that a coincides with one of the � ì , the path
� ì is

empty.
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Consider the graph �]MP�o�G@HB;�h��azE , obtained by removing from � the vertices � anda and all their incident edges. Define the graph � ì to be the connected component of ��M
containing �qì (if aU�À�qì for some Ú , then the corresponding ��ì is empty).

The set of all � ì must cover �zM . For assume that there were another component þ of ��M
that contained none of the � ì . No vertex of þ can be adjacent to � (because then, this vertex
would be one of the � ì ), and by construction, there is no edge between þ and any � ì . So,
all paths between þ and � must go through a , and � would not have been two-connected.

If �zìQ�,� � for some Ú��!� , there must be a path
�

between �/ì and ��� . Let abì be the
last vertex of

�
that also lies on

� ì , and a s the first vertex appearing after a ì on
�

that
lies on some path

� s for �"��»Ú ( � and � might be identical, but don’t have to be). With�#��UÚv�v� (and � � ��Ua ), we get
�

as a topological minor by mapping ���! S�0�# " ���` p �0�# Ì �0�# $ �
to �d���0a ì �0a s ��a]�0� � � (and the edge �d�! b���` Ì � to the path � – ��$ – a , for some %&��KÚv���l�'� ).

The only step left to establish the lemma is to show that the existence of several edges�da��0j�� and �da]��k#� with j��0kÞ1�� ì would again yield
�

as a topological minor in � . Assume
that two such edges exist. Then, j(��Äk , because � is simple. Consider paths

� � and
� �

between j and � ì ( k and � ì , respectively), and let ) be the first vertex of
� � that lies on

� �
(such a vertex must exist, because both paths meet � ì ).

Because j*��Ik , the vertex ) cannot be equal to both — assume without loss of generality
that )+��øk . Let �5�v�,��øÚ . We then obtain

�
as a topological minor, mapping nodes�d�# b���` " �0�# p ���` Ì �0�# $ � to �da]��kl�-)h�0���0���<� (and the edges �d�! S���` p � and ���# b�0�# Ì � to the pathsa – j – ) and a – � s – � , respectively).

If none of the above cases yielding
�

applies, then � is �d���0a]� � � -separable, completing

the proof.

Using the structural property of Lemma 3.5, we can now complete the proof of Theo-
rem 3.1.

Proof of Theorem 3.1. One direction has already been established as Lemma 3.2. For
the converse direction, assume that there exist non-Mengerian graphs that do not contain�

as a topological minor, and let �o�^��
����� have the smallest number of edges among all
such graphs ( � need not be unique).

Then, � must be two-connected according to Lemma 3.4, and it must contain at least one
vertex � of degree greater or equal to

�
according to Lemma 3.3. We can therefore apply

Lemma 3.5, and because � does not contain
�

as a topological minor by assumption, it
must be �d���0a]� � � -separable for vertices �h��ao1�
 and some

� ë � .
Let � , � and � be such that ÁD¾ � ¿ ���5���0��TÄ½h¾ � ¿ ���/���0� , and . a maximum set of vertex-

disjoint time-respecting � - � paths. We distinguish between four cases based on the locations
of � and � .

(1) If � and � both lie in the same lobe �]ì , consider the graph �]M , defined as the subgraph
induced by � ì J B;�h��azE . If there is a time-respecting � - a path in �)@{� ì starting at � at time����� ì � and arriving at a at time no later than ����| ì � , or starting at a at time ����| ì � and arriving
at � no later than �P��� ì � , we add an edge ���h��aH� labeled ��M����d���0aH���N�0/2143����P��� ì �Ù������| ì �0�
(if the edge �d���0aH� existed in � , we just relabel it). If no such path exists, and the edge�d���0aC� existed in � , we remove it from ��M . All other labelings stay the same. We prove thatÁÙ¾65 � ¿ 50���5���0�É�IÁD¾ � ¿ ���/�0�0� and ½h¾65 � ¿ 50���5���0��c½�¾ � ¿ ���/�0�0� (this obviously yields a contradiction,�zM being smaller than � ).

For the first equation, let 8 be a set of vertices separating � from � in ��M ; we show that8 also separates � from � in � . Let
�

be any time-respecting � - � path in � , with vertices
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�� � � . If 
Þ� � � > 
����zM\� , then
�

is a path in �]ì and must meet 8 . Otherwise,
�

must pass
through � and a , and we obtain another time-respecting � - � path

� M by replacing the subpath� � a with the edge �d���0aH� .6 Because
� M > �zM , it meets 8 , and because 
Þ� � M\� > 
�� � � , �

must also meet 8 .
For the second equation, note that . can contain at most one path

�
not entirely in � ì .

Applying the above replacement of � � a by �d���0aC� to
�

(if it exists) yields a set .�M of
time-respecting node-disjoint � - � paths in ��M with size � .�M��!�	� .¼� . Conversely, if .NM is a
set of time-respecting node-disjoint � - � paths in ��M , we can replace the edge �d���0aC� (if it
is part of one of the paths) by the time-respecting � - a path that we assumed to exist in �
when we added the edge �d���0aC� , obtaining a set of paths of the same size.

(2) If � lies in some lobe �]ì , and � in another lobe �7� , each time-respecting � - � path
must pass through � or a ; that is, there can be at most two disjoint paths, and deleting �
and a suffices to disconnect � from � . For � to be non-Mengerian, there would have to
be exactly one disjoint time-respecting � - � path, but each � - � separator would have to have
size Ã . In particular, neither � nor a separate � from � , so there must be time-respecting � - �
paths

�98 � � ï that use � (resp. a ), but not a (resp. � ).
Consider the graph �]M induced by � ì J � � J B<���0azE , without the edge �d���0aH� , if it existed

in � . Because � was minimal by assumption, ��M must have an � - � separator of size Â ,
i.e. some vertex :� .:� must meet both

� 8
and

� ï , because both of these paths lie entirely in ��M . Therefore:� must lie in �]ì or � � — by symmetry, we will assume that :�¶1Ü��ì . Now, let
�

be a
time-respecting � - � path in � that does not meet :� . Then,

�
must pass through both � anda . Assume without loss of generality that � appears on

�
before a . Let

� M be the path
obtained by replacing � � � with � � 8 � . � M is a time-respecting � - � path entirely in �]M , and
not meeting :� , contradicting the fact that :� is an � - � separator for �NM .

(3) If �H�I� , and � lies in some lobe ��ì (or one of the three symmetric cases �C�Ka , �É�K� ,
or �~�oa ), we can apply an argument much like the above. All � - � paths must use either�Wì or |qì , so if � were non-Mengerian, we would have Á ¾ � ¿ ���5���0�S�^Ã and ½ ¾ � ¿ ���/�0�0�S�fÂ .
Again, there must be paths

� : and
� } using exactly one of � ì and | ì each.

Let �zM be the subgraph induced by � ì J B<�h��azE . If there is a time-respecting � - a path
in �o@~�zì reaching a at time ����|qì�� or earlier, we add an additional edge ���h��aH� labeled�hM����d���0aH���[�G�P��| ì � . Otherwise, we remove the edge �d���0aC� , if it existed in � .

Again, �]M is smaller than � , and the rest of the argument is the same as in the previous
case.

(4) The last remaining case is that �Æ�,� and �H�,a (or vice versa). In that case, any
time-respecting � - � path passes through exactly one lobe �Nì . Let

� ì denote such a path
through � ì , if it exists. Because all paths through � ì have to use � ì , there cannot be two
disjoint paths through any one � ì ; and for different Ú , the

� ì are disjoint. Because each
� ì

can be blocked by deleting ��ì , we obtain that

½h¾ � ¿ ���/���0��� ;;;; < Ú[� there is a time-respecting� - � path through � ì = ;;;; ë?ÁÙ¾ � ¿ ���/�0�0�m�
completing the proof.

>
For a path ? and two nodes ¨`©�«A@ ? , we use ¨�?×« to denote the subpath of ? with ends equal to ¨ and « .
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A polynomial-time algorithm
The proofs of Lemmas 3.3 – 3.5 and Theorem 3.1 are implicitly algorithmic; taken

together, they can be used to obtain a polynomial-time algorithm for the following problem:
Given a Mengerian graph � , with vertices �5���S1§
 , find a maximum set of disjoint time-
respecting paths from � to � .öS÷ ç`®lhç#èoêh·úµh·

There is a polynomial-time algorithm that takes a graph �»�»��
����� ,
and vertices �/���~1§
 , and returns either a maximum set of disjoint time-respecting paths
from � to � or a subgraph of � isomorphic to a subdivision of

�
.

Proof. We begin by testing whether there exists a time-respecting path from � to � .
If the maximum degree of � is at most Ç , then the reduction to unlabeled directed graphs

described in Section 2, and our observation preceding Lemma 3.3 gives a polynomial-time
algorithm to find a maximum set of vertex-disjoint time-respecting paths. Otherwise, we
can apply the construction in Lemma 3.5 to produce either a subgraph of � isomorphic to a
subdivision of

�
, or express � as a ���h��a]� � � -separable graph. We therefore must consider

the latter of these cases.
We consider the locations of � and � relative to the lobes in the decomposition of � ,

following the four cases in the proof of Theorem 3.1. In case (4), when B��/�0�vE���B<���0a]E ,
we simply test, for each lobe �]ì , whether there is a time-respecting � - a path through ��ì .
In case (1), we construct the subgraph � M described in the proof of Theorem 3.1; by the
argument there, ½ ¾65 � ¿ 5 ���/�0�0�H�G½ ¾ � ¿ ���/�0�0� , and so we can continue to search for the paths
recursively on the graph �]M , which has strictly fewer nodes than � . In case (2), we search
recursively for the paths in the subgraph induced by � ì J � � J BD�h��azE , which again has
strictly fewer vertices than � . If there are two disjoint time-respecting � - � paths in this
subgraph, then ½�¾ � ¿ ���/���0���øÃ ; otherwise it is equal to Â . Finally, case (3) is handled
analogously to cases (1) and (2).

The time bound can be seen as follows: in polynomial time,we either produce a maximum
set of disjoint time-respecting � - � paths, or we reduce the size of the graph by at least one
vertex and continue recursively. Thus the overall running time is polynomial in the size of� .

We also note that this approach allows us to test whether a graph is Mengerian in
polynomial time, without invoking the minor-testing algorithm of Robertson and Seymour
[19].

4. COMPLEXITY RESULTS
In the previous sections, we considered examples showing that the maximum number of

vertex-disjoint time-respecting paths in a temporal network need not equal the minimum
size of an � - � separator. In this section, we investigate the complexity of determining the
two quantities for a given temporal network. It turns out that both are NP-hard except for
special classes of graphs, and that the number of disjoint time-respecting paths is even hard
to approximate to within a polynomial. We do not know about the approximability of the
minimum separator.öS÷ ç`®lhç#èÄý�·\¸`·

For a temporal network ��������� , it is NP-hard to decide whether � has
an � - � separator of size at most � with respect to � .



14 KEMPE, KLEINBERG, KUMAR

Proof. The proof is via a reduction from the 3SAT problem.
Let �CB)��þz� be a 3SAT instance, with variable set B � B<j " �Dr<rDrD��jED�E , and clausesþ � BWÁ " �<rDr<rD��ÁF$zE , of the form Á � �G� � � "IH � � � p H � � � Ì . Assume that the literals in each

clause are sorted such that if � � � s is a negated variable, so are all the following literals in
this clause.

We will construct �^�^��
É�����m�v�V�v� and � such that ��������� has an � - � separator of size at
most %KJÙ� if and only if �CBí�vþz� is satisfiable.

The vertex set 
 consists of vertices _{ì � � and abì � � for each ÂLZ»Ú�Z��t�DÂ�ZL�àZM% ,
two additional vertices � and � , and auxiliary vertices introduced through delay edges, or
to avoid parallel edges. The vertices _ ì � � will correspond to % copies of the literal j ì , and
their inclusion into a separator 8 to setting jlìÉ� true. The vertices aSì � � correspond to j�ì ,
and their inclusion into 8 to setting j ì � false.

We add labeled edges such that any � - � separator must, for each Ú , include either all _Pì � �
or all a ì � � — these edges will be called the “variable edges”. This ensures that there is
a well-defined mapping between variable assignments and � - � separators of size %¼� . To
encode the satisfaction of clauses, we want, for every clause Á � , to include a time-respecting
path through the three vertices corresponding to the literals of clause Á	� (which will all be
either of the form _ ì � � or a ì � � for some Ú ). We will call these additional edges the “clause
edges”. Their labels must be such that paths cannot shortcut by jumping between clause
edges and variable edges. We will ensure this by giving all clause edges � incident with_ ì � � very small labels, and all those incident with a ì � � large labels.

For variable assignment, we use the following edges: For each Úv�N� , there is an edge���/��_ ì � � � , which is labeled ���0���5��_ ì � � �0�2�+O , and an edge ��a ì � � ���0� labeled ���0��a ì � � �0�0���Q�LP .
Furthermore, for each Ú��Q�/�N�`M , we have an edge �d_{ì � �5��a2ì � �-5�� labeled ���0��_lì � �/��abì � �-5��0�Ë�GR
(i.e. there is a complete bipartite graph between the vertices corresponding to j ì and those
corresponding to j{ì ).

To deal with clause Á � , we need to distinguish several cases: If � � � " is an unnegated
variable j�ì , we add an edge ���/��_lì � �<� labeled ���0���5��_lì � �;����^Â .7 If �S� � " is a negated variablej ì , we add an edge ���5��a ì � � � labeled �P�����/�0a ì � � ����Kû .

Similarly, if �S� � Ì is an unnegated variable jlì , we add an edge �d_{ì � �<���0� labeled ���0��_lì � �q�0�0���É��
, otherwise, if � � � Ì � j ì , an edge �da ì � � ���0� labeled ���0�da ì � � �0�0�0�É�^Â5Â .
For �L�fÂ/��Ã , if both �4� � s and �S� � s R " are unnegated variables ( �4� � s��Äj�ì³u��-�S� � s R " �ojhì�� ),

we add an edge �d_ ì u � � �0_ ì � � � � labeled �P���d_ ì u � � ��_ ì � � � ����U�CßKÂ . If � � � s � j ì uW�'� � � s R " � j ì � ,
we add an edge ��abì\u � �5��abì�� � �;� labeled ���0��abì³u � �5��a2ì�� � �;�0�É�U�Îß"P .

In the only remaining case � � � s �Ij ì uW�'� � � s R " � j ì � , we insert a delay edge between _ ì u � �
and abì�� � � , labeled ���ÎßIÂ5�v�zßTP5� .

Notice that any clause edge � incident with a node _ ì � � has label �������2ÝUO , and any clause
edge � incident with a node aSì � � has label �������QTVP . Therefore, no simple time-respecting� - � path containing a variable edge ���/��_ ì � � � can contain a clause edge incident to some_lìS5 � �-5 , and no such path containing a variable edge �da~ì � �/���0� can contain a clause edge
incident to some a ì 5 � � 5 . Also, notice that in this way, we defined (disjoint) time-respecting� - � paths for every clause Á�� , through some nodes _{ì � � and abì 5 � � 5 .
W
Since this will create parallel edges, we could subdivide the edge with a vertex — we will, however, not refer

to any such auxiliary vertices for the sake of clarity.
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This reduction can obviously be done in polynomial time, so it remains to show that� has an � - � separator (with respect to � ) of size at most %i� if and only if �CBí�vþz� is
satisfiable.

For the “if” direction, let XY(YB&+ B true � false E be a variable assignment satisfying þ .
Let

8'� BD_ ì � � ��XÉ��j ì �É� true �DÂÎZZ�ÆZT%)E J B<a ì � � ��XÉ�dj ì �É� false �DÂÎZZ�ÆZT%)E
8 obviously has size %i� , and meets every path containing any variable edge ��_ ì � � �0a ì � � 5�� ,
in particular every path consisting entirely of variable edges. By the above observation
about labels of clause edges incident to _Vì � � and abì � � nodes, 8 meets any path containing
any variable edge.

All remaining time-respecting � - � paths in � are those corresponding to clauses ÁF� . Let�
be any such path. Because X satisfies þ , it must set XÉ�dj ì �]� true for some j ì 1KÁ �

(resp. XÉ�dj ì �2� false for some j ì 1ØÁ � ). But then, _ ì � � 1§8 (resp. a ì � � 1Ø8 ), and 8 meets�
. Therefore, 8 is an � - � separator.
For the “only if” direction, let 8 be any � - � separator of size at most %i� . For each Ú ,8 must contain either all _{ì � �5�DÂiZ[�cZ\% , or all abì � �/�DÂ¼Z!�§Z\% , in order to intersect

all time-respecting � - � paths consisting entirely of variable edges. If 8 contained neither_ ì � � nor a ì � � 5 for some Úv�N�/�N�*M , it would not meet the time-respecting path � – _ ì � � – a ì � � 5 – � .
By the Pigeon Hole principle (and because � 8S�×Z�%i� ), 8 cannot contain both _Pì � � anda ì � �-5 for any Úv�N�/�N� M , and neither can it contain any auxiliary vertices. Hence, the variable
assignment X§(qjhì6]+ <

true if _ ì � " 1L8
false if abì � " 1í8

is well-defined. Because 8 meets every time-respecting � - � path, it must meet every path
corresponding to clauses Á�� , i.e. it must contain either some _Vì � � for j�ìÉ1íÁ'� , or some abì � �
for j ì 1LÁ � . In both cases, the clause Á � is satisfied by the assignment XÉ�dj ì � , so X satisfies þ ,

completing the proof.

In the general disjoint paths problem, we are given an (unlabeled) graph �^�o��
���N� , as
well as � pairs of terminals ��� " �0� " �m�Dr<rDr<�<��� s ��� s � , where � ì �0� ì 1í
 . We seek � node-disjoint
paths

� " �DrDr<rD� � s so that
� ì joins �;ì to �xì . This problem is NP-complete when � is part

of the input [12], or when � is directed and �Ø�gÃ [7]. When � is a fixed constant, the
problem is polynomial-time solvable when � is undirected, by an algorithm of Robertson
and Seymour [19], and when � is a directed acyclic graph, by an algorithm of Fortune,
Hopcroft, and Wyllie [7].

In [4], Berman asked about the natural extension of these results to the case of time-
respecting disjoint paths: can we find � node-disjoint paths in polynomial time when � is
a fixed constant? We first show that the result for undirected graphs does not carry over
(assuming

� ���F � ), even when �)�fÃ , all � ì are the same, and all � ì are the same. In
particular, this shows that the number of vertex-disjoint time-respecting paths is NP-hard
to compute.öS÷ ç`®lhç#èÄý�·úµh·

(a) Given a temporal network ��������� , with vertices � and � , it is NP-
complete to decide whether there exist two node-disjoint time-respecting � - � paths.
(b) It is also NP-hard to approximate the maximum number of disjoint time-respecting � - �
paths within a factor of ^���� �Þ� "�Ï-_ OE`;� for any aNTÛÅ .
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Proof. The theorem is proved by a reduction from the hardness (resp. approximation
hardness) of the bounded length vertex-disjoint paths problem, which is defined as follows:

Given a directed graph �,�»��
���N� with edge lengths �×(`�,+&b¶@HB;Å#E , a length boundc
, and two vertices �/�0�Q1L
 , what is the maximum size of a set of vertex-disjoint � - � paths,

each of whose length is bounded by
c
?

The NP-hardness of deciding whether there are two vertex-disjoint paths with lengths
bounded by

c
was proved in [14]. [9] proved that it is NP-hard to approximate within a factor

of % "0Ï p OE` the maximum number of edge-disjoint � - � paths whose lengths are bounded by
some

c �d^��C% "�Ï p � . Their proof also works for vertex-disjoint paths. However, their
construction only produces non-negative edge lengths. To obtain positive edge lengths, we
can scale all edge lengths by % , and add Â . However, this blows up the length of paths by a
factor of % , and thus requires us to use a length bound

c �!^��e% Ì Ï p � . We refer the reader
to [9] for more details.

For the reduction to the vertex-disjoint time-respecting paths problem, we will make use
of the delay edges introduced above. We construct an undirected graph �ËMh�,��
]M�����M³� with
labeling � , whose vertex set will consist of the set 
 , and the auxiliary vertices introduced
through delay edges.

For every edge ���f���h��aH�H1Ø� with length �0�����~TGÅ , we add
c Xf�0�����PßGÂ delay edges

between � and a , labeled ��Å%�-�0�����0�m�<rDr<rÙ�<� c X"�0�����Ù� c � . Note that because �0������T»Å , these
delay edges can only be traversed in one direction, and hence, we can think of them as
directed, even though our graph is actually undirected. Also, because delay edges implicitly
introduce additional vertices, the resulting graph is simple.

It is then straightforward to verify that there exist � vertex-disjoint time-respecting paths
between � and � in �]M if and only if there exist � vertex-disjoint paths in � whose length is
bounded by

c
, proving part (a) of the theorem.

The number of edges in �]M is � �]M��{Z c � �Þ�%�,^��C% _�Ï p � , and we therefore get a gap of% "0Ï'_ OE` for part (b), completing the proof.

However, by generalizing the “pebbling game” of Fortune, Hopcroft, and Wyllie [7] to
the setting of time-respecting paths, we obtain the following result.öS÷ ç`®lhç#èÄý�·üê�·

There is a polynomial-time algorithm for the time-respecting disjoint
paths problem with a fixed number of terminal pairs in a directed acyclic graph.

Proof. Let � be a directed acyclic graph with labeling � . Our algorithm is modeled on
the “pebbling game” of Fortune, Hopcroft, and Wyllie [7]. We first perform a topological
sort of the graph � , ignoring the time labels, and we define the level of a node � in � to
be its “order” in this topological sort. Thus, each node is given a distinct level in the setB/Â/�Dr<rDrÙ���×E so that if ��_����`� is a directed edge in � , then the level of _ is lower than the level
of � . We place � pebbles in the graph; pebble ½ ì starts at node � ì , and is trying to traverse
a time-respecting �;ì - �xì path. When pebble ½lì is on a node other than �Wì , it is marked with
the label of the edge it used to enter this node. The basic rule of the pebbling game is as
follows:

At any step, pebble ½ ì can be moved from node _ to node � if all of the following conditions
are satisfied:
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1. _ has the lowest level among all the nodes of � which have a pebble.

2. � has no pebble on it.

3. The label of the edge �d_e�0�#� is not smaller than the label with which the pebble ½ ì is
marked.

When pebble ½�ì reaches node �0ì , it can be removed.
The game is won if all the pebbles are removed from the graph. We first prove the

following lemma, which is analogous to the one in [7]:æ�ç#è2èQéØýl·\¸`·
The pebbling game can be won if and only if there are mutually node-

disjoint time-respecting paths
� " �Dr<rDr<� � s , where

� ì has endpoints � ì and � ì .
Proof. Suppose there is a winning strategy. Clearly, the path traced out by a pebble is

time-respecting. We just need to prove that these paths are vertex-disjoint. Suppose not.
Then, the paths traced out by pebbles ½ ì and ½ � intersect at some vertex _ . Suppose ½ ì
reaches _ first. ½�ì must leave _ before ½g� arrives at _ . But this is a contradiction because
the level of the node on which ½ � resides before moving to _ is lower than the level of _ .
Thus, the paths are disjoint.

Conversely, suppose there exist vertex-disjoint time-respecting paths connecting the pairs��� ì �0� ì � . Then it is easy to see that we can move pebbles along these paths such that all the

rules of the pebbling game are satisfied.

It is now easy to describe the required algorithm. Define a configuration of � to be
an assignment of pebbles with time labels to nodes. Every single one of the � pebbles
could be on any node, and could be labeled with one of at most � �Þ� edge labels, so there
are at most ^������ 
Þ�<� �¼� � s � configurations of � . Construct a directed graph on the set of
all configurations where vertices correspond to configurations and edges to legal moves.
Define the starting configuration to be the configuration where all pebbles are at their
initial positions �Wì . Similarly, the ending configuration is one in which all pebbles are
removed. Then, the pebbling game can be won if and only if there is a path from the
starting configuration to the ending configuration in this graph.

Thus, Lemma 4.1 implies that the desired disjoint paths exist if and only if there is a path
from the starting to the ending configuration in the graph we constructed above. This gives

an ^��0��� 
Þ�D� �Þ� � s � time algorithm for the disjoint paths problem for directed acyclic graphs.

5. INFERENCE PROBLEMS
Thus far, we have always been given a graph and a complete time labeling, and we

have sought to decide certain properties of the labeled graph. We now turn to the class of
inference problems, in which we are given an incomplete time labeling; the task is then to
refine the labeling to ensure that the graph has a certain property, or conclude that such an
extension is not possible.

In this section, we provide a polynomial-time algorithm for the Reachability Inference
Problem discussed in the introduction. Consider an undirected graph �f�î��
���N� rooted
at = . Let �§�g� 
Þ� and %ù�g� �¼� . Each edge � of the graph is assigned an interval 9W: with
lower and upper limits �ehWa~�;=#����� and _/½/½h�;=#����� (note that these limits can be ikj ).

The intervals can be closed, open or semi-open — however, for the purpose of the
following exposition, we will assume without loss of generality that all intervals 9W: are
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closed8. We are also given two disjoint sets
� ��F > 
^@]B<=*E . We wish to find a time

labeling � with �P���W�H1)9<: for all edges � , so that there is a time-respecting path from = to
each node of

�
, and to no node of F . We will call such a labeling a valid labeling.

The algorithm consists of two phases, the first one propagating arrival constraints towards
the root, and the second one constructing a tree out of the root in the style of Dijkstra’s
Algorithm. The first phase assigns vertex labels XÉ�d�#� to each vertex of 
 — this will
denote the fact that the labeling � should be such that there is no time-respecting = - � path
reaching node � at time XÉ���`� or earlier. Initially, we know that the “negative” vertices F
must not be reached at time j or earlier. These constraints then propagate to other nodes,
for if the time interval on an edge �Î�o��_����`� does not allow us to choose a labeling to avoid
reaching a node � at time XÉ�d�#� , node _ must not be reached at a time when edge � can still
be used. This happens when _*½5½h�;=#�����QÝ"XÉ�d�#� and XÉ��_l�QÝ"�ehWa~�;=#����� ; in this case, we will
call edge � insufficient.

In the second phase, the algorithm constructs a tree out of the root that will reach each
vertex as early as possible, subject to the arrival constraints in the form of XÉ�d�#� values.
This is done in a way very analogous to Dijkstra’s Single Source Shortest Paths Algorithm.
We maintain a tree � out of the root = , and for every vertex _ in the tree the earliest
possible arrival time �ml . Then, we repeatedly add an earliest admissible edge, where an
edge �]1on#�C�H� is admissible if � l ZÜ_/½/½h�;=#����� and XÉ�d�#�QÝÛ_*½5½��<=#���W� . The pseudo-code for
the algorithm is shown in Figure 5.pFq'rFs't�uwv'x'y{z�|}s�~-�F�F���2q��-�}�	q}uQ�Fr�����0�w��uwv�um�	q}uw�	�2� ¦��;ªh¥���� s't��	q�q �A@�� �-�F��� ¦��<ª�¥��6��� s't��	q�q �#@������ ��Y�,��x�u-q��2v'x}��t	��u'���-��uQ���w� ��� u'�Fum�-�Fv ����r	� ¤e¥)¦��#©��<ª uQ�{¡+�Fs� ¦��/ª£¢L¤S¥��e¤-¦;¦�¤vª �� � � ¦4¦mªh¥��*§ v'x}��t	�{u'���s2¨	�	q}uw��q��-�}�	q}uQ�Fr�s � ¡�©Y�0�w��uwv�um�	q}uw�	�«ªVvFs��}� v'x}�«tFs�s'v ¦�¬ ªV|�u-q�q«t	�wy���uQ�� v�t	���2tFs�s'v	��� ��v ¦�® �¯ ��v�°#�}�����w� ��� u'�Fum�-�FvFq'±�Qy��	q�q²�s	�Fuwv�uw¨	����sm���-v	�-�Fv ¬ �w²}�F�Fu � um���«�}�	q�s-| ® �³g�0� �Æ� u'�2� ¨	��t�v	��´�uQ��ª § �	� � uQ�}� ãCµ vFs��}� v'x}��q��-�}�	q 7`¦�¤vª s �v'x}��q��F�-v�����r	� ¤ sm�v'x}�«����uw¶'�}� ¦ ~ � ²}��v'xouQ��ª § �-�F�{�'��v ãC·É¥��6� �¯ ��v�¸ ¦ ª ª �	�-��s'v	�«v'x}���'��vs � ����r	�F� ¤¹@ ¡º�w���wx�v'x}��vª���sm�Fv	��uQ���«��´	�F�-vFq'±�sm�}���-�F�F~m²�s}uQ�Fv�s ��¤ �» �,��x�u-q�� ¸ ¦ ª ª ��sm�Fv	��uQ����-�{���my¼u'���FuQ��q�� ����r	�2�Fs¯ ��v ¤e¥)¦��!©��<ª	§S��@ ª § �}� v'x}� ���my¼u'���FuQ��q�� ����r	�{uQ�{¸ ¦ ª ª |�x�u'�wx��v�v	��uQ����v'x}�y¼uQ��u�yF�'y¨	�	qm�}��s � v'x}�2¶'�}�-�Fv�uwv�±�½ ¦�¤vª%¥�¾A¿'Àq¦ � ¦��;ªYÁ ° ©�ãCÂ`©�¤S¥��×¤-¦<¦³¤�ª�ª �p���� ¤ vFs�ª!�-�F�{�'��v 7`¦³¤�ªE¢ ½ ¦�¤vª �ÃY�0� ��?�Ä ª!v'x}�-�Å s't��	q�q�����q��-�}�	q����2����r	�F� ¤¼§ �'��v 7#¦�¤vªE¢+¤S¥��×¤-¦<¦³¤�ª �7 u'�«� ¨	�	q}uw��q��-�}�	q}uQ�Fr�s � ¡��Æ q	�'�z'x}��t	�{u'���s�¨	�	q}uw��q��-�}�	q}uQ�Fr�s � ¡�

FIG. 5. The algorithm for label assignments

Let us first analyze the running time of this algorithm. Call an edge sufficient if it is not
insufficient. Note that once an insufficient edge becomes sufficient, it remains sufficient
(because X values can only increase). Therefore, step 2 can be implemented to take^��C%!ÇSÈ¼É�P� time. Step 5 can be implemented in ^��e%»ß§��ÇSÈ¼ÉÉ�P� time, so the running time
of the algorithm is ^��C%[Ç4È�É[�P� .Ê

In fact, edges can be labeled with any set, so long as the set has an appropriate representation, and membership
can be decided within the desired complexity bounds.
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Let us now prove the correctness of the algorithm. We maintain the invariant that any
valid labeling of � cannot contain a time-respecting = - � path which reaches � on or beforeXÉ�d�#� (i.e., the label of the last edge on this path must be greater than XÉ���`� ). This is clearly
true after step 1. Consider an insufficient edge �N�f�d_e�0�#� . If there is a labeling such that
a time-respecting = - _ path reaches _ on or before ��hWa~�;=`����� , then any label on the edge �
will result in a time-respecting = - � path which reaches � on or before XÉ�d�#� , a contradiction.
Thus, we can make XÉ��_l� at least ��hWa~�;=#����� . So, the invariant remains true after step 2.
Also, all edges are sufficient after step 2.

For a sufficiently small positive constant Ë (e.g. smaller than any positive difference
between values from the set B��ehWa~�;=#�����m��_/½/½h�;=#�����S����1i�ÆE ), we can consider without loss
of generality valid labelings ��M that satisfy the following property: any time-respecting = - �
path with labeling ��M does not reach a vertex � before XÉ�d�#��ßÌË .

In steps 3–5, we maintain the following invariant. Let �lM be a valid labeling of � . Then,
for any vertex ��1o�Ø@[B<=*E , the earliest time at which a time-respecting (with respect to �lM )= - � path can arrive at � is at least � 8 . Clearly, this holds after step 3.

We now show that the invariant holds after each iteration of the while-loop in step 5. Let�]�»�d_e�0�#�S1�n#�e�H� be an admissible edge which attains the minimum, and suppose that �
satisfies the invariant before � is added to it. First note that the unique path from = to � in� J B;�5E is time-respecting, satisfies the condition that it does not reach � before XÉ�d�#�PßfË ,
and has Í#�����Q1L9 : (because � is admissible). We need to show that � J B;�5E also satisfies the
invariant. Suppose not. Then, there exists a valid labeling �lM and a time-respecting = - � path�98

with respect to �hM which arrives at � before � 8 �[Í#����� . This path must contain an edge�WMh�,�d_lM����*M³�21on#�C�H� , _�Ml1o� . We claim that ��M is admissible. By the invariant,
� 8

does not
reach _lM before � l 5 , and because

� 8
is time-respecting, � l 5ZI_/½/½h�;=#���WM�� . Further, the fact

that �hM is valid implies that
�98

cannot reach �`M on or before XÉ�d�`M\� , so XÉ���`M³�HÝI_*½5½��;=`���WM�� .
Therefore, ��M is admissible.

As the algorithm selected � , we know that Í#��� M �ÞëKÍ#����� . If XÉ�d� M �ß!ËiëGÍ#����� , then
clearly,

� 8
cannot reach �`M before Í#����� and hence cannot reach � before Í#����� (recall that� 8 �\Í#���W� ). If �wl 5 ë�Í#����� or �ehWa~�;=#���WM\�Îë+Í#����� , then

�98
, respecting time, cannot reach �

before Í#����� (because it reaches �#M no earlier than Í#���W� ). Thus, we get a contradiction and
the invariant holds after step 5.

Claim. Let �hM be any valid labeling of � . Then, there exists a time-respecting = - �
path with respect to �hM only if ��1�� (here � is the tree obtained after step 5).

Proof. Suppose the claim is false, and let ��M be a valid labeling such that there exists a
time-respecting = - � path

�98
with �"Î1�� . Then, there is an edge � M 1Zn#�C�H�6Ï �98 . As we

argued above, � is an admissible edge and step 5 should not have terminated. Thus, we get a

contradiction.

So, if
�

is not a subset of � , then there is no valid labeling. If
� > � , then � can be

extended to all edges as shown in step 6. Indeed, none of the nodes of F are in � because
these nodes have labels j . Further, if ��_����`�Q1L� such that _L1o�S����Î1�� , then the fact that� is not admissible implies that � l TÄ_*½5½��<=#���W�zë+��hWa~�;=#����� or XÉ�d�#�zëÄ_*½5½��<=#���W� . In the
latter case, the fact that � is sufficient implies that XÉ��_l�Që(�ehWa~�;=#����� and so, �'lÆT(�ehWa~�;=#����� .
Thus, the set of nodes reachable from = is exactly equal to those in � , and the algorithm is
correct.
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6. FURTHER RESULTS AND OPEN PROBLEMS
A consequence of the analysis in the preceding section is the following: If ��������� is

a temporal network with a root = , such that every node � is reachable from = by a time-
respecting path, then in fact there is a directed arborescence � rooted at = such that the
unique = - � path in � is time-respecting for every node � . (We will call such a structure
a time-respecting arborescence.) This follows by applying the inference algorithm to the
“trivial” case in which all nodes belong to

�
, and each interval 9�: is a single point. Of

course, in this special case, the algorithm just becomes the one of including the “earliest”
edge out of the current arborescence.

This result begins to look slightly more unexpected when one considers the failure of
natural related reachability properties in temporal networks. For example, suppose we
have a temporal network with graph �Ä�,��
���N� and labeling � , with the property that for
every _e�0�§1Ü
 , there is a time-respecting path from _ to � . Let us call such a �����v�h� a
temporally connected network. Given a temporally connected network �	�	��
����� on �
nodes, is there a set � M > � consisting of ^��d�P� edges so that the temporal network on the
subgraph ��
��� M � is also temporally connected? In other words, do all temporal networks
have sparse subgraphs preserving this basic connectivity property? The answer to the
analogous question is affirmative for standard graphs, simply by taking a spanning tree in
the undirected case, or the union of two arborescences in the directed case. We can show,
however, that there exist temporally connected networks for which no subgraph of fewer
than ÍÎ�d��Ç4È�ÉÉ�P� edges is temporally connected. (Consider, for example, the hypercube on
the set of all � -bit strings, in which we join nodes _ and � by an edge of label � when they
agree on all bit positions but the �YÐeÑ one. This graph is temporally connected, but ceases to
be so if any edge is deleted.) For the case of strictly time-respecting paths, we obtain the
much stronger lower bound of ÍÎ�d� p � , by labeling all edges of the complete graph Ò D with
the same label. We ask as an open question: what is the tightest function |×���P� for which
every temporally connected network on � nodes has a subgraph on |×���P� edges that is also
temporally connected?

We can also show that the natural analogue of Edmonds’ Theorem on edge-disjoint
arborescences breaks down for temporal networks, even in the following approximate
sense:

öS÷ ç`®lhç#èLÓh·\¸`·
For every constant � , there exists a temporal network with root = , so

that = has � edge-disjoint time-respecting paths to each other node, but there are no two
edge-disjoint time-respecting arborescences rooted at = .

Proof. Consider the graph ��s consisting of a root = , connected to vertices � " �Dr<rDr<�0�qpvs O "
by edges labeled Å . There is an edge labeled Â from each � ì to each � � . In addition, we
have a vertex aÕÔ for each set 8 > BD� " �<rDr<rÙ�0�qpvs O " E with � 8S�P�?� , which has incoming
edges labeled Å from all � ì with � ì 1í8 .

It is then easy to verify that there are � disjoint time-respecting paths from the root to
every other vertex. However, if there were two disjoint time-respecting arborescences, one
of them (call it Ö ) could contain at most �NXÛÂ of the edges �d=��0� ì � . For a subset 8 (of size� ) of the indices Ú with ��=��0� ì �«Î1×Ö , there will be no time-respecting path from = to a Ô inÖ .
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As another open question, we ask: what is the tightest function Ø{�d�P� so that, in every
temporal network on � nodes with Á disjoint time-respecting paths from a root = to each
other vertex, there are at least Á}Î�Ø{�d�P� disjoint time-respecting arborescences rooted at = ?
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