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ABSTRACT
In this paper, we study the vaccination of graphs against
the outbreak of infectious diseases, in the following natu-
ral model generalizing a model by Aspnes et al.: An infec-
tious disease breaks out at a random node of the graph and
propagates along the edges of the graph. Vaccinated nodes
cannot be infected, nor pass on the infection, whereas all
other nodes do. The decisions on which nodes get vacci-
nated must be made before the random outbreak location
is known. There is a cost associated with vaccination and a
different cost with getting infected.

In this model, we provide two results. First, we improve
the approximation guarantee for finding the best vaccination
strategy from O(log1.5 n) to O(log z) (where z is the support
size of the outbreak distribution), by rounding a natural lin-
ear program with region-growing techniques. Second, we an-
alyze the impact of autonomy on the part of the nodes: while
a benevolent authority may suggest which nodes should be
vaccinated, nodes may opt out after being chosen. We ana-
lyze the “Price of Opting Out” in this sense under partially
altruistic behavior. Individuals base their decisions on their
own cost and the societal cost, the latter scaled by some fac-
tor β. If the altruism parameter is β = 0, it is known that
the Price of Anarchy and Price of Stability can be Θ(n). We
show that with positive altruism, Nash Equilibria may not
exist, but the Price of Opting Out is at most 1/β (whereas
the Price of Anarchy can remain at Θ(n)).
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1. INTRODUCTION
Recent epidemics of the Avian Flu and Swine Flu, among

others, have reinforced the dramatic vulnerability of our so-
ciety to outbreaks of epidemic diseases. Similarly, recent
worms and viruses (such as Storm or Conficker) have shown
us how severe consequences can be for massive infections of
nodes in a computer network. Protecting social and com-
puter networks from such outbreaks is a task of paramount
social and economic importance.

Strategies for protecting a network fall roughly into two
categories: preventive and reactive. Reactive strategies at-
tempt to isolate nodes of the network (individuals or ma-
chines) once they have been diagnosed with an infection.
Prophylactic vaccinations or inoculations protect nodes so
that they will in the future not be affected by an outbreak1.
In this paper, we focus on preventive strategies, i.e., the
decisions which nodes in a network should be vaccinated.

As was evident from the extensive coverage of vaccina-
tions against H1N1, there are many factors complicating
the allocation of vaccines. Among the most prominent ones
are (1) supply shortages, limiting the number of individuals
who can be vaccinated, and (2) node autonomy: individu-
als make their own decisions on whether to get inoculated,
which may conflict with the socially optimal strategy. The
former naturally leads to optimization problems for allocat-
ing the limited amounts of vaccine, while the latter raises
natural questions about the inefficiency of game-theoretic
outcomes in such settings.

We study these issues in a natural model for network vac-
cinations, generalizing a model proposed by Aspnes et al. [4].
In this model, vaccinated nodes can never contract the dis-
ease, so they are effectively removed from the network. Af-
ter all vaccination decisions are made, the disease will break
out at a node v chosen according to a known probability
distribution pv and infect all nodes reachable in the network
(with the vaccinated nodes removed). There is a cost of Cv

associated with node v being vaccinated and a cost of Lv

for v being infected. (A formal description of the model is
given in Section 2.) The optimization goal is to find a set of
nodes to vaccinate that minimizes the expected total cost of
all nodes.

1In practice, the protection may not be perfect; considering
inoculations which succeed only with a certain probability
is an interesting direction for future work.



Our first result in this paper is an improved approximation
algorithm for the goal of minimizing the total cost. The pre-
vious best algorithm was an O(log1.5 n) approximation due
to Aspnes et al. [4], based on repeated greedy invocations
of the Arora-Rao-Vazirani Sparsest Cut Algorithm [3]. In
Section 4, we give an Integer Program for the optimization
problem of minimizing the expected number of infections,
under a hard constraint on the total number of vaccinated
nodes. Using region-growing techniques [11, 10], we derive
an (O(1), O(log z)) bicriteria approximation (where z is the
size of the support of the distribution p), violating the vac-
cination constraint by a factor O(log z). Up to constant fac-
tors, this bicriteria result, applied with z = 1, also subsumes
the MinSBCC result of [14]. We give an example showing
that the integrality gap of the LP matches our guarantees,
even in the bicriteria setting. Using the bicriteria approxi-
mation as a subroutine, we then obtain the following theo-
rem.

Theorem 1.1. There is a polynomial-time O(log z) ap-
proximation algorithm for minimizing the expected social cost.

In reality, the decision of whether to get vaccinated usu-
ally lies with the individual nodes, whose interests do not
necessarily align with the social goal of minimizing the total
cost. Individuals tend to undervaccinate when they are not
concerned with the impact of their action on other nodes.
It is therefore natural to investigate how inefficient “soci-
etally stable” states can become as a result of individual
decisions and their externalities. Indeed, Aspnes et al. [4]
already showed that each instance of the inoculation game
has at least one pure Nash Equilibrium and that the Price of
Anarchy [16] can be Θ(n) in the worst case (but no worse).

The Θ(n) lower bound relies on the fact that individu-
als are entirely selfish in their vaccination decisions, and
completely unaware of — or indifferent to — how their de-
cisions may affect others in the network. Time and again,
this assumption of selfishness has been found to be violated
in controlled experiments [18, 19]. In a recent paper, Meier
et al. [20] analyzed the impact of friendship on stable out-
comes. In their model, a node’s utility is the sum of its own
cost and a β fraction of the cost of all its neighbors. Meier et
al. show that for some graphs, this notion of friendship leads
to significantly more efficient equilibria, while for others, the
improvement is small.

In this paper, we instead consider a notion of altruism
first mentioned by Ledyard [18] and studied recently in the
context of traffic routing [6]. In this model, an individual’s
utility is the convex combination of his own cost (with weight
1−β) and the cost of all other nodes (with weight β). Thus,
our notion models a general feeling of altruism or responsi-
bility for the welfare of society, and the parameter β captures
how strong this feeling is compared to selfish incentives. An
alternative interpretation of this model is that the cost of the
disease is “socialized” to an extent, e.g., that nodes’ health
insurance rates increase if others catch the disease. The
parameter β then captures how steeply the individuals are
penalized for others’ diseases.

Interestingly, in the inoculation game with altruism, pure
Nash Equilibria need not always exist2, as we show in Sec-

2As far as we are aware, the authors of [20] do not establish
whether the model with friendship always guarantees pure
Nash Equilibria.

tion 2. Even when they do exist, Nash Equilibria can some-
times be as bad as in the model without altruism. Inter-
estingly, however, while the Price of Stability [2] without
altruism can also be Θ(n), a similar notion improves dra-
matically with the altruistic model.

Since Nash Equilibria may not exist, the notion of “Price
of Stability” does not apply directly. Mixed Nash Equilibria
are not a natural solution concept here, as vaccination deci-
sions tend to be permanent or very long-term. We therefore
instead consider an “Opt-Out” dynamic, and correspond-
ingly define the Price of Opting Out. A benevolent authority
suggests an initial vaccination assignment S0. The nodes in
S0 can choose to opt out of being vaccinated, in any order.
However, no node v /∈ S0 may opt to become vaccinated.
(Precise definitions are given in Section 2.3.) This models
a scenario in which individuals may choose to avoid being
vaccinated due to various concerns, but the authority will
not revise plans vis-à-vis nodes not originally included in the
vaccination plan. Our main theorem (stated formally and
proved in Section 3) is then the following:

Theorem 1.2. The Price of Opting Out is at most 1/β.

Thus, in a sense of somewhat limited autonomy among
the nodes, our theorem establishes a 1/β bound on the so-
cial inefficiency introduced by individual nodes’ decisions.
Together with the Θ(n) bounds for Price of Anarchy, and
Price of Stability without altruism, this result can be inter-
preted as saying that coordination of vaccination strategies
or socialization of healthcare costs alone may not lead to
societally desirable outcomes if individual nodes can over-
ride suggestions. However, the combination of both, i.e.,
socializing costs and starting with a carefully chosen assign-
ment, may lead to significantly more desirable outcomes,
even when individuals get to override the suggested vacci-
nation strategies.

Naturally, it would be desirable to strengthen Theorem
1.2 to the outcomes after arbitrary best-response dynam-
ics. Since best-response dynamics may cycle for inoculation
games with partial altruism (see Section 2), we cannot fo-
cus on stable states alone, but would have to consider all
states reachable via best-response dynamics. Notice that
such a result would be much stronger than traditional Price
of Stability bounds.

1.1 Related Work
A number of recent studies have analyzed the spread of

worms or viruses on Internet-like topologies by focusing on
characterizing the epidemic threshold (the transmission rate
at which the disease goes from dying out quickly to infecting
a large share of the network) for models such as small-world
graphs [23] and preferential attachment models [5, 17]. The
epidemic threshold is related to graph properties such as
degree distribution, spectral radius and isoperimetric con-
stants [7]. Based on these observations, Dezső and Barabási
[8] suggest the vaccination of high-degree nodes in power-law
random graphs as a way of increasing the epidemic threshold
and thereby reducing the spread of diseases. Similar heuris-
tics with analysis under random graph models with given
degree distributions are also presented in [15]

The model of Aspnes et al. [4] has been extended in several
ways. As discussed above, Meier et al. [20] consider the ad-
dition of friendship. Moscibroda et al. [21] instead consider



malicious Byzantine players who may misrepresent their ac-
tions with an intent to harm other players. (Naturally, this
model is more suited to computer networks than social net-
works.) Perhaps surprisingly, such malice can sometimes
lead to societally more desirable outcomes, due to the fear
of other players. Recently, Diaz et al. [9] showed that the
same “windfall of malice” can be achieved with a mediator.
A mediator is a trusted third party that suggests actions to
each player; the players retain free will and can ignore the
mediator’s suggestions.

Besides the random outbreak model, several other natural
models of disease outbreaks have been studied in the recent
literature. If the source node s (or node set) of the initial
outbreak is known, and the goal is to minimize the number
of infected nodes, the problem is equivalent to the Min-Size
Bounded Capacity Cut problem studied by Hayrapetyan
et al. [14]. They gave a (1/λ, 1/(1−λ)) bicriteria approxima-
tion algorithm for this problem, which — up to constant fac-
tors — is subsumed by our bicriteria approximation result.
If the goal is instead to maximize the number of uninfected
nodes, i.e., the number of nodes not in a component with s,
the problem is called Max-Size Bounded Capacity Cut
[14, 22]. At optimality, the two problems are equivalent, but
the known approximation results for Max-Size Bounded
Capacity Cut are weaker.

If there is a timing component to the infection process,
i.e., in each time step, the algorithm can vaccinate k nodes,
and the infection spreads one hop in the network, then the
problem is known as the Firefighter problem [1]. For
different optimization versions of this problem, Anshelevich
et al. [1] recently analyzed approximation algorithms and
hardness results.

2. PRELIMINARIES
We first describe our generalization of the basic model of

Aspnes et al. [4]. Our generalization allows the vaccination
cost, infection cost, and probability of initial infection to
vary among nodes. We then extend the model to include a
notion of altruism. We show that with altruism, there are
instances without pure Nash Equilibria. We therefore pro-
pose a notion of “opting out” from vaccinations, and define
the Price of Opting Out.

2.1 Basic Model
The social or computer network is represented by an undi-

rected graph G = (V, E) of n nodes, each of which can either
be vaccinated or unvaccinated.

If node v chooses to vaccinate, its cost is Cv. Cv combines
such factors as monetary cost, side effects, pain, loss of in-
come, inertia, etc. In other words, it subsumes all factors
that may cause v to not want to be vaccinated.

Once all vaccination decisions are made, one node be-
comes infected. Node v is chosen as the initially infected
node with probability pv. (Thus, we assume that

P

v pv =
1.) We let z denote the size of the support of p, i.e., the
number of nodes v with pv > 0.

From the initially infected node, the infection spreads
along edges of the graph to all unvaccinated nodes. How-
ever, no vaccinated nodes can become infected or pass on
the infection. Let S be the set of vaccinated nodes, and
Γ1, . . . , Γk the connected components of G \ S. If node v
is unvaccinated and in component Γi, its probability of in-
fection is

P

u∈Γi
pu. The cost for becoming infected is Lv,

leading to an expected cost of Lv ·
P

u∈Γi
pu if node v chooses

to stay unvaccinated. As with Cv, Lv captures all factors
(such as pain, monetary cost, etc.) that make becoming
infected undesirable for v.

Since each node v in component Γi has expected cost Lv ·
P

u∈Γi
pu, the total social cost with set S vaccinating is

P (S) =
X

v∈S

Cv +
X

i

X

u∈Γi

pu

X

v∈Γi

Lv. (1)

We use S∗ to denote the optimum set of nodes to vaccinate,
i.e., the set minimizing P (S).

While it is socially optimal to minimize P (S), individual
nodes’ preferences may not align with this objective. An
individual node will choose the strategy (be vaccinated or
not be vaccinated) based only on its own tradeoff. That is,
a selfish node will vaccinate if Cv ≤ Lv ·

P

u∈Γi
pu, and not

vaccinate otherwise. Let

pv(S) =

ȷ

Cv if v ∈ S
Lv ·

P

u∈Γi
pu if v /∈ S, v ∈ Γi

(2)

denote the cost that node v experiences based on all players’
vaccination decisions. Since players will act selfishly, this
scenario leads naturally to a game termed the inoculation
game.

Aspnes et al. [4] already established that there always is a
pure-strategy Nash Equilibrium in this setting3, and showed
a linear lower bound on the Price of Anarchy. Recall that
the Price of Anarchy [16] is defined as the ratio between the
social cost at the worst Nash Equilibrium and at the social
optimum. By contrast, the Price of Stability [2] is the ratio
between the social cost at the best Nash Equilibrium and at
the social optimum.

Proposition 2.1. Both the Price of Anarchy and the Price
of Stability can be Θ(n).

Proof. A simple example is a star graph with Cv = C,
Lv = L and pv = 1/n for every node v, and C = L + ϵ. In
the unique Nash Equilibrium, no player vaccinates, while the
socially optimal solution vaccinates the center node of the
star. The respective social costs are nL and C+(1−1/n)·L.

2.2 Altruism
The basic model introduced above assumes that individ-

uals are completely selfish and do not take into account
the effects of their actions on other nodes. This assump-
tion is frequently found to be violated in public goods and
other experiments [18, 19], where participants act somewhat
altruistically or spitefully, even in single-shot experiments
with complete strangers. We therefore study the inocula-
tion game under a model of partial altruism. Our model
is based on a suggestion of Ledyard [18, p. 154] and has
been studied before in the context of traffic routing [6]. The
altruism level of the nodes is denoted by β.

Definition 2.2 (Perceived Cost). The perceived cost
of a β-altruistic node is the convex combination

p(β)
v (S) = (1 − β) · pv(S) + β · P (S). (3)

3Strictly speaking, their results were for uniform probabili-
ties pv and costs Cv, Lv, but they carry over directly.



Thus, the perceived cost of a partially altruistic node is the
convex combination of the individual cost (selfish part) and
the social cost (altruistic part). As usual, a node will choose
the strategy (vaccinate or do not vaccinate) which minimizes
the perceived cost. The tradeoff is characterized by the fol-
lowing proposition, which can be obtained by simple rear-
ranging.

Proposition 2.3. Let S ⊆ V \ {v} be the set of other
nodes vaccinating, and Γ the component of G \S containing
v. Let Γ1, . . . , Γk be the subcomponents of Γ resulting from
removing v from Γ. Then, v will prefer to be vaccinated if
and only if

Cv ≤ (1 − β)
X

u∈Γ

pu · Lv

+ β · (
X

u∈Γ

pu

X

u′∈Γ

Lu′ −
X

i

X

u∈Γi

pu

X

u′∈Γi

Lu′).

Remark 2.4. Our definition of perceived cost is similar
to the notion of friendship used by Meier et al. [20]. In
their case, the altruistic part does not consider the cost of
all nodes, but just that of the neighbors of v in G. Thus,
they model more the incentives due to friendship in a social
network, while our model captures more a general notion of
altruism toward all others.

By interpreting the altruistic term as a monetary cost (in-
stead of perceived cost due to altruism), we can also consider
our model as one of socialized health care costs: nodes in
the network have to pay a β fraction of the cost incurred by
other nodes, e.g., in the form of health care premiums. This
payment should provide additional incentives for nodes to be
vaccinated, as spreading a disease to others will eventually
lead to higher costs for them as well.

Proposition 2.5. There is an instance such that for ev-
ery β, the Price of Anarchy is Θ(n).

Proof. For the complete bipartite graph K2,n−2, if Cv =
C, Lv = L, pv = 1/n for every node v, and C = L + ϵ, the
state in which no node is vaccinated is a Nash Equilibrium
regardless of the value of β. The calculation of the ratio
is the same as in Proposition 2.1. (Notice that for β large
enough, the state with both nodes on the left side vaccinated
is also a Nash Equilibrium, and the Price of Stability is thus
smaller than Θ(n).)

While the inoculation game with selfish players is a po-
tential game and thus possesses pure Nash Equilibria [4],
the introduction of partial altruism changes the situation
significantly.

Proposition 2.6. There exist instances of the inocula-
tion game with partial altruism in which there is no pure
Nash Equilibrium.

Proof. Consider the graph in Figure 1 with two nodes
u, v and cliques of the indicated sizes. Whenever an edge
is shown, there is an edge from u (or v) to all nodes in the
corresponding clique. On the left, there are 14 cliques of size
10000 each. The altruism value is β = 1

4
.

It is a fairly straightforward calculation to show that
(1) no node besides u or v ever wants to be vaccinated,
(2) v wants to be vaccinated if and only if u is vaccinated,

u v

859578

30422

150000

10000

10000

10000

.

.

.

14

Figure 1: A graph without Nash Equilibrium

and (3) u wants to be vaccinated if and only if v is not
vaccinated.
Thus, this instance encodes a “Matching Pennies” type of
game and has no pure Nash Equilibrium.

2.3 Opting Out
In light of Proposition 2.6, the standard notion of the

Price of Stability [2] is not defined for pure Nash Equilib-
ria in our game. Mixed Nash Equilibria are not a natural
solution concept in inoculation games, because the decision
of whether or not to be vaccinated tends to be permanent
or very long-term. Nevertheless, it is of interest to analyze
the effect that nodes’ autonomy with respect to vaccination
decisions has on the social cost.

Since the main concern with individual autonomy is un-
dervaccination of the network (see the discussion at the end
of Section 3), we consider a natural model of opting out. A
benevolent authority suggests a set of nodes S0 to vaccinate,
such as the optimal solution S∗ or an approximation. Sub-
sequently, nodes that were targeted for vaccination have the
option to override this decision, e.g., by not showing up for
their vaccination. However, we do not allow nodes v /∈ S0 to
override the decision and become vaccinated instead. Since
the resulting dynamic is monotone in the number of vacci-
nated nodes, it will always converge to a final set of vacci-
nated nodes. However, this set of nodes may depend on the
order in which nodes opt out.

For a starting set S0, we define R(S0) to be the collection
of all node sets S such that the opting-out dynamic, starting
from S0, will eventually reach S. Formally, we define R(S0)
as follows:

Definition 2.7. (1) S0 ∈ R(S0), and (2) If S ∈ R(S0),
and v ∈ S prefers being unvaccinated, given that all nodes
in S \ {v} are vaccinated, then S \ {v} ∈ R(S0).

Note that we do not require each S ∈ R(S0) itself to
be stable; we also include in R(S0) sets such that in later
steps, further nodes will opt out. We then define the Price
of Opting Out to be the worst-case ratio between the social
cost of any set S ∈ R(S∗) and the social cost at S∗. Thus,
the Price of Opting Out captures the increase in cost due to
giving nodes the authority to opt out of vaccinations.

Our notion of the Price of Opting Out bears some sim-
ilarity with the “Price of Sinking” defined by Goemans et



al. [13] in the context of routing games and valid utility
games. However, they considered the strongly connected
sink component of the best-response graph, and considered
bounds on the expected cost under the stationary distribu-
tion of a random walk. Our goal is to obtain bounds on each
reachable state. Naturally, it is a question for future work
to consider not only opt-out dynamics, but states reached
by arbitrary sequences of best responses.

3. THE PRICE OF OPTING OUT
In this section, we bound the price of opting out, by an-

alyzing any state that can be reached from an initially vac-
cinated set S0 by a sequence of opt-out moves. Our main
theorem is the following:

Theorem 3.1. If S is obtained from S0 by a sequence of
opt-out moves, then P (S) ≤ 1

β
· P (S0).

Theorem 3.1 thus in a sense captures the Price of Limited
Autonomy: letting individuals choose not to be vaccinated
when an optimal (or near-optimal) solution prescribes that
they should be.

Proof. Let {v1, . . . , vℓ} = S0 \ S be the set of all nodes
who have opted out of being vaccinated, in the order in
which they opted out. Let St = S ∪ {vt+1, . . . , vℓ} be the
set of nodes still vaccinated after t nodes have opted out,

and Γ
(t)
1 , . . . , Γ

(t)
kt

the connected components of G \ St. In

particular, Γ
(0)
1 , . . . , Γ

(0)
k0

are the connected components of
the initial vaccinated set S0. Define

Φ(t) :=
P

v∈St
Cv + β ·

P

i

P

u∈Γ
(t)
i

pu

P

u′∈Γ
(t)
i

Lu′ .

We will prove by induction that for all t, we have

Φ(t) ≤ P (S0). (4)

The base case t = 0 holds because β ≤ 1, simply substi-
tuting the definition of social cost. Consider step t in which
node v = vt decides to opt out of vaccinating. By ceasing

to be vaccinated, v merges one or more components Γ
(t)
i for

i ∈ M , forming one new component Γ
(t+1)
j . Then,

Φ(t + 1) = Φ(t) − Cv + β · (
P

u∈Γ
(t+1)
j

pu

P

u′∈Γ
(t+1)
j

Lu′

−
P

i∈M

P

u∈Γ
(t)
i

pu

P

u′∈Γ
(t)
i

Lu′).

By Proposition 2.3, the fact that v chooses to opt out of
vaccinating implies that

Cv ≥ (1 − β)
P

u∈Γ
(t+1)
j

pu · Lv

+β · (
P

u∈Γ
(t+1)
j

pu

P

u′∈Γ
(t+1)
j

Lu′

−
P

i∈M

P

u∈Γ
(t)
i

pu

P

u′∈Γ
(t)
i

Lu′)

≥ β · (
P

u∈Γ
(t+1)
j

pu

P

u′∈Γ
(t+1)
j

Lu′

−
P

i∈M

P

u∈Γ
(t)
i

pu

P

u′∈Γ
(t)
i

Lu′).

Substituting this inequality into Φ(t + 1) shows that Φ(t +
1) ≤ Φ(t), and the claim now follows by induction.

After all vt have opted out, the total social cost is

P (S) =
P

v∈S Cv +
P

i

P

u∈Γ
(ℓ)
i

pu

P

u′∈Γ
(ℓ)
i

Lu′

≤ 1
β
· Φ(ℓ)

≤ 1
β
· P (S0),

where the last step followed from the claim we proved by
induction.

By applying Theorem 3.1 to the optimum set S∗, we ob-
tain the following corollary:

Corollary 3.2. The Price of Opting Out is at most 1/β.

Notice, however, that Theorem 3.1 is more general. In
particular, it applies to approximately optimal starting sets
S0. While computing S∗ itself is NP-complete, we show in
Section 4 how to find an O(log z) approximation to the social
cost. Theorem 3.1 then guarantees that if we start with the
set S0 vaccinated, after allowing the nodes to opt out, the
social cost will be within a factor O(1/β · log z) of optimal,
and stable to further opting out of nodes.

We also remark that Theorem 3.1 is tight.

Proposition 3.3. There are instances with altruism β
where the Price of Opting Out is 1/β.

Proof. Let β > 0 be arbitrary, and consider a star graph
with n nodes. Let pv = 1/n, Lv = 1 and Cv = 1 + β(n +
1/n − 2) for every node v. Then, an easy calculation shows
that opting out always leads to a solution with no nodes
vaccinated, for a total cost of n. On the other hand, the
optimum solution vaccinates the center node of the star,
giving a total cost of 1+β(n+1/n−2)+1−1/n = βn+O(1).
As n → ∞, the Price of Opting Out then converges to 1/β.

Instead of the Price of Opting Out, one could study the
Price of Opting In. There are two reasons why this is not
as natural an approach: (1) It is less realistic that one could
force individuals to undergo vaccinations, and (2) The Price
of Opting In is always 1. For an easy calculation shows
that if β-altruistic nodes prefer to switch their status to
“vaccinated”, the social cost always decreases.

Naturally, the most general dynamic one would want to
study would combine opting in and opting out, considering
any sequence of best-response steps. Ideally, one would want
to prove a 1/β bound for all states reachable by such best re-
sponses. However, analyzing a full best-response dynamic in
this sense appears to be quite challenging, and it is possible
that it reaches states much less efficient than 1/β · P (S∗).

4. APPROXIMATING SOCIAL COST
In this section, we present an improved approximation

algorithm for the problem of minimizing the social cost. The
previous best algorithm was an O(log1.5 n) approximation
due to Aspnes et al. [4]. Their algorithm used repeated
greedy invocations of the Sparsest Cut algorithm of Arora
et al. [3], and was thus not particularly practical.

Theorem 4.1. 1. There is a polynomial-time
(O(1), O(log z)) bicriteria approximation algorithm for
the problem of minimizing the expected cost of infected
nodes, subject to a constraint on the cost of vaccinated
nodes. The O(1) factor applies to the cost of infected
nodes, while the O(log z) applies to the cost of vacci-
nated nodes.

2. There is a polynomial-time O(log z) approximation al-
gorithm for the problem of minimizing the expected so-
cial cost.



Both of our algorithms are based on rounding the follow-
ing natural linear program for the first problem (i.e., mini-
mizing the cost of infected nodes subject to the constraint
that the cost of vaccinated nodes be at most γ):

Minimize
P

u∈V pu

P

v∈V (xu,v · Lv)
subject to

P

v∈V (yv · Cv) ≤ γ
xu,u = 1 − yu for all u
xu,v ≥ xu,w − yv for all u, edges (w, v)
yv ∈ {0, 1} for all v
xu,v ≥ 0 for all u, v

In the above Integer Linear Program, yv is a decision
variable encoding whether node v is vaccinated/removed
(yv = 1) or not (yv = 0). xu,v is 1 if there is a path be-
tween u and v avoiding all vaccinated nodes (and 0 if not).
That is, xu,v is 1 iff an infection starting at u would also
infect v. pu is the probability that node u will be initially
infected. Notice that the objective function captures the
expected cost of infected nodes by linearity of expectation.

The first constraint limits the total cost of nodes that can
be vaccinated. The second and third constraint, together
with the minimization objective, ensure that the yv and xu,v

are consistent, i.e., that they satisfy the intended definition
of the xu,v.

Note that when Cv = C and Lv = L for all nodes v, and
all nodes have a uniform probability of infection, we recover
the sum-of-squares partitioning problem of Aspnes et al. [4],
namely, to minimize the expected number of infected nodes
given a constraint on the number of vaccinated nodes.

4.1 The LP Rounding Algorithm
As usual, we relax the integrality constraint to yv ∈ [0, 1],

so that the LP can be solved in polynomial time. The yv can
then be interpreted as the “lengths” of nodes. From these
lengths of nodes, we can then use shortest path distances
to define a hemimetric d (satisfying non-negativity and the
triangle inequality), by setting

du,v := minP is a u−v path

P

w∈P,w ̸=v yw.

With this definition, we then have

xu,v = max(0, 1 − du,v − yv). (5)

Our goal is to use (a modification of) the region-growing
techniques of Garg, Vazirani, and Yannakakis [11] to round
the fractional LP values in order to obtain a set of vaccinated
nodes. The hemimetric we defined is akin to a “spreading
metric” [10], and our analysis bears a lot of similarity with
that of [10, 11]. We define the ball around u of radius r as
Bu(r) := {v | du,v ≤ r}, and its boundary (the set of nodes
partially inside Bu(r)) as δu(r) := {v | du,v ≤ r ≤ du,v+yv}.
Notice that for each radius r ≤ 1, the set δu(r) forms a cut
separating u from all nodes v with du,v > r.

Next, we define the volume of a ball. The fraction to
which a node v is inside a ball of radius r is defined as
qv = 1 if du,v + yv ≤ r, qv = 0 if du,v > r, and qv =

r−du,v

yv

if du,v ≤ r ≤ du,v + yv. Then, the volume of a ball is
V (Bu(r)) :=

P

v∈Bu(r) yvqvCv.
Let Z be the support of the distribution pv, i.e., the set of

all v such that pv > 0, and z := |Z|. With these definitions
in place, we can now define the rounding algorithm.

Algorithm 1 LP Rounding Algorithm

1: Solve the LP to obtain the hemimetric du,v.
2: while V (G) ∩ Z ̸= ∅ do
3: Let u ∈ V (G) ∩ Z be an arbitrary node with pu > 0.

4: Choose ru ≤ ρ to minimize
P

v∈δu(ru) Cv

V (Bu(ru))+V (Bu(ρ))/z
.

5: Set S := S ∪ δu(ru).
6: Remove from G all of Bu(ru) and δu(ru).
7: end while
8: Output the set S of nodes to be vaccinated.

Notice that ρ < 1
2

is a parameter that can be used to trade
off between the violations of the vaccination constraint and
infection objective.

The key step in analyzing Algorithm 1 is a region grow-
ing lemma for node-weighted multicuts. Such a lemma has
been known as folklore and is occasionally attributed to [12],
although no proof appears there.

Lemma 4.2. For any node u, any ν > 0, and radius bound
ρ, there is a radius ru ≤ ρ such that

P

v∈δu(r) Cv ≤ 1
ρ
· ln(V (Bu(ρ))+ν

ν
) · (V (Bu(ru)) + ν).

Furthermore, ru can be found in polynomial time by exam-
ining all distances r ≤ ρ such that r = du,v for some node

v, and retaining the one minimizing
P

v∈δu(r) Cv

V (Bu(r))+ν
.

Proof. We assume for contradiction that the search over
all r ≤ ρ fails to find a radius ru meeting the claim of the
lemma. Since the sets only change at discrete points equal-
ing du,v for some v, this implies that the claimed inequality
fails to hold for all r ≤ ρ.

First, notice that d
dr

V (Bu(r)) =
P

v∈δu(r) Cv for all r, so

the assumption implies that
d

dr
V (Bu(r))

V (Bu(r))+ν
> 1

ρ
· ln(V (Bu(ρ))+ν

ν
)

for all r ∈ [0, ρ]. By taking an integral over r from 0 to ρ on
both sides, we obtain

R ρ

0

d
dr

V (Bu(r))

V (Bu(r))+ν
dr >

R ρ

0
1
ρ
· ln(V (Bu(ρ))+ν

ν
)dr

= ln(V (Bu(ρ))+ν
ν

).

But the lefthand side evaluates to [ln(V (Bu(r)) + ν)]ρ0 =

ln(V (Bu(ρ))+ν
ν

), which gives a contradiction, thus completing
the proof.

Using this lemma, we can now prove the following bicri-
teria approximation guarantee:

Theorem 4.3. When Algorithm 1 terminates, it satisfies
the following two properties:

1. The total cost of vaccinated nodes in S is at most
2 ln(z+1)

ρ
· γ.

2. The expected cost of infected nodes is at most 1
1−2ρ

times the objective function value of the LP.

Proof. 1. Consider the set of nodes δu(ru) removed (i.e.,
chosen for vaccination) in some iteration. Note that
the number of iterations in the rounding algorithm is
upper-bounded by z (and z = n if all nodes have a non-
zero probability of infection). By applying Lemma 4.2
with ν = V (Bu(ρ))/z, we obtain that

P

v∈δu(r) Cv ≤ ln(z+1)
ρ

· (V (Bu(ru)) + V (Bu(ρ))
z

).



Let U be the set of all nodes which were chosen as
centers of balls at some point during the algorithm.
To upper-bound the total vaccination cost of removed
nodes, we sum over all nodes u ∈ U . Since all nodes in
Bu(ru) and δu(ru) are removed from G, their weight
is only counted for one region, and we obtain that

P

v∈S Cv ≤ ln(z+1)
ρ

·
P

u∈U (V (Bu(ru)) + V (Bu(ρ))
z

)

≤ 2 ln(z+1)
ρ

· γ.

In the last inequality, we used that V (Bu(ρ)) ≤ γ for
all u, and that

P

u V (Bu(ru)) ≤ γ by disjointness of
the regions. Both of these inequalities follow immedi-
ately from the first constraint of the LP.

2. To analyze the objective function, consider any two
nodes v, w in the same component of G \ S. Thus,
both v and w are in the same ball Bu(ru) for some
u ∈ U .

Because neither node is vaccinated, neither is in δu(ru),
so we obtain that du,v + yv ≤ ru ≤ ρ and du,w + yw ≤
ru ≤ ρ. Because du,v +yv = dv,u+yu, this implies that
dv,u ≤ ρ, so by triangle inequality, dv,w ≤ dv,u+du,w ≤
2ρ− yw. Together with Equality (5), this implies that
xv,w = max(0, 1 − dv,w − yw) ≥ 1 − 2ρ. Thus, the
objective function after rounding is

P

u∈U

P

v∈Bu(ru)\δu(ru) pv

P

w∈Bu(ru)\δu(ru) Lw

≤ 1
1−2ρ

·
P

u∈U

P

v∈Bu(ru)\δu(ru) pv
P

w∈Bu(ru)\δu(ru) xv,w · Lw

≤ 1
1−2ρ

·
P

v∈V pv

P

w∈V xv,w · Lw

= 1
1−2ρ

· OPTLP.

This proves the approximation guarantee for the ob-
jective function.

Notice that in the special case that z = 1, our prob-
lem becomes the MinSBCC problem [14]: To minimize the
number of nodes on the s-side of a cut, given a budget for
vaccinations. For this problem, [14] had presented a (2, 2)-
bicriteria approximation algorithm. With ρ = 1

4
, we ob-

tain a (4 ln(2), 2) ≈ (2.77, 2) bicriteria approximation, thus
nearly recovering the specialized result of [14].

4.2 Minimizing the Total Social Cost
We next show how to modify Algorithm 1 to minimize

the objective function of social cost as defined in Section
2. To do so, we change the objective function of the LP
to “Minimize

P

u∈V pu

P

v∈V (xu,v · Lv) + γ”, and leave the
constraints of the LP the same, treating γ as a variable now.
After solving the LP, we run Algorithm 1 on the resulting
hemimetric, as before. Using Theorem 4.3, we then obtain
the following:

Corollary 4.4. The algorithm runs in polynomial time
and approximates the expected social cost to within a factor

max( 1
1−2ρ

, 2 ln(z+1)
ρ

) = O(log z).

Proof. Let γ be the total vaccination cost of the fractional
LP solution, and Λ the total infection cost of the fractional
LP solution. So the total LP cost is γ + Λ. Theorem 4.3
guarantees that for the rounded solution S, the total vacci-

nation cost is
P

u∈S Cu ≤ 2 ln(z+1)
ρ

·γ, and the total infection

cost at most 1
1−2ρ

·Λ. Adding these terms implies the claim.

4.3 Integrality Gap of the LP
In this section, we show that the bicriteria analysis in The-

orem 4.3 is essentially tight, by giving a class of example
graphs on which the integrality gap matches the approxi-
mation guarantee of Algorithm 1 up to constants, even in a
bicriteria sense.

Let G be a node expander graph of maximum degree ∆,
i.e., G satisfies that any set S with |S| ≤ n/2 has at least |S|
neighbors. The existence of such a graph (for large enough,
but constant, ∆) can be proved easily using the probabilistic
method. Set pv = 1

n
and Cv = 1 for all vertices v, and

γ = n
2∆

for the integer LP.
Now consider a solution S vaccinating at most γ nodes,

and let Γ1, . . . , Γk be the connected components of G\S. We
will show that there is at least one i such that |Γi| ≥ n/2.

For assume that this were not the case. Then, the expan-
sion property can be applied to each Γi, guaranteeing that
each has at least |Γi| neighbors. By definition, all neighbors
of Γi must lie in S, and by the degree bound, each node
v ∈ S can be the neighbor of at most ∆ nodes u /∈ S. So

∆|S| ≥
P

i |Γi| = n − |S|,

or |S| ≥ 1
∆+1

· n, which contradicts the assumption that

|S| ≤ γ = 1
2∆

· n. Therefore, there must be at least one
component Γi of size at least n/2, and the expected number
of infected nodes is at least n/4. (With probability at least
1
2
, at least n/2 nodes get infected.)
Next, we consider the objective value of a fractional solu-

tion to the LP. Since we want to prove bounds in a bicrite-
ria sense, we tighten the first constraint by a factor b ≥ 1,
i.e., we require that

P

v∈V yv ≤ γ/b. Consider the frac-

tional solution which assigns uniformly yv = γ
bn

= 1
2∆b

. If
nodes u, v are h hops away from each other in G, assign
xu,v = max(0, 1 − h · 1

2∆b
). This clearly defines a feasible

solution to the tightened LP.
To evaluate the objective function, focus on one node u,

and consider
P

v xu,v. We can group the nodes v by increas-
ing distance from u. By the degree bound, there are at most
∆h nodes v at distance h hops from u. Furthermore, if u
and v are at distance at least 2∆b, we have that xu,v = 0 in
the above definition. We therefore obtain that

P

v xu,v ≤
P2∆b

h=0 ∆h · (1 − h · 1
2∆b

)

= ∆1+2∆b−1
∆−1

+ 1
2∆b

· ∆+∆1+2∆b((∆−1)·(2∆b)−1)

(∆−1)2

= Θ(∆2∆b).

Summing over all n and multiplying by pu gives us that
the fractional LP objective value is Θ(∆2∆b). Thus, the
integrality gap of the objective function is Θ( n

∆2∆b ). In par-
ticular, so long as b = o(log n), the integrality gap is poly-
nomial in z (and also polynomial in n). Thus, the factor
Θ(log z) incurred in the number of vaccinated nodes by our
rounding algorithm is necessary so long as we desire a better-
than-polynomial approximation in the expected number of
infected nodes.

5. CONCLUSIONS
In this paper, we presented improved approximation algo-

rithms and bounds on the Price of Opting Out for a network
inoculation game, in the presence of altruism. We believe
that the Price of Opting Out result in particular has inter-
esting consequences in terms of policy: it suggests that if



individuals have the freedom to opt out of suggested vacci-
nations, then neither coordination of strategies nor socializa-
tion of costs alone will lead to an efficient outcome, yet the
combination of both gives outcomes of much lower societal
cost.

Naturally, many questions remain for future work. Most
directly, our Price of Opting Out result should be gener-
alized (if possible) to a more general notion of autonomy.
Since pure Nash Equilibria may not exist in general, a natu-
ral (and very strong) result would be to show that all states
reachable from the optimum by any sequence of individual
best responses have the same cost bound. Such sequences
could include arbitrary choices to vaccinate or not to vacci-
nate matching nodes’ preferences. Such a result would sig-
nificantly strengthen the policy implications of our results,
since in most scenarios, individuals do have the freedom to
decide whether or not they want to be vaccinated. Further-
more, while mixed Nash Equilibria are not an ideal solution
concept for the type of game we study here, it would never-
theless be interesting from a theory point of view what they
look like, and how efficient or inefficient they are.

Stronger bounds could also be obtained under additional
assumptions about the network structure. For instance,
most social networks have bounded degrees. Indeed, we can
show that even in the basic model of Aspnes et al. without
altruism, the Price of Anarchy is bounded by

√
n∆ if all

degrees are bounded by ∆ (whereas the general bound is
Θ(n)). The exact impact on the Price of Opting Out or a
generalization constitutes an interesting direction for future
work. Similarly, it would be interesting to study the impact
of other graph parameters.

The approximation guarantees we derive in Section 4 are
essentially best possible for the particular linear program we
use. However, it would be desirable to see whether there are
corresponding lower bounds in terms of approximation hard-
ness, or whether different techniques might lead to improved
approximations.

More generally, the model proposed by Aspnes et al. (whose
generalization we study here) is somewhat simplistic. It
assumes that each edge of the graph will deterministically
transmit the infection, and that each vaccination will deter-
ministically protect the node. Assigning (known) probabili-
ties to both types of events would be much more natural, but
most likely lead to a significantly more difficult optimization
problem.

Finally, our analysis assumes that all nodes know the full
topology of the network. This is certainly not true in social
networks, and it would be interesting to formulate a natural
model of partial knowledge, and analyze its impact on the
behavior of individuals in the network.
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