
Competitive Influence Maximization in Social

Networks

Shishir Bharathi David Kempe Mahyar Salek

Department of Computer Science, University of Southern California

Abstract. Social networks often serve as a medium for the diffusion of
ideas or innovations. An individual’s decision whether to adopt a prod-
uct or innovation will be highly dependent on the choices made by the
individual’s peers or neighbors in the social network. In this work, we
study the game of innovation diffusion with multiple competing innova-
tions such as when multiple companies market competing products using
viral marketing. Our first contribution is a natural and mathematically
tractable model for the diffusion of multiple innovations in a network. We
give a (1−1/e) approximation algorithm for computing the best response
to an opponent’s strategy, and prove that the “price of competition” of
this game is at most 2. We also discuss “first mover” strategies which
try to maximize the expected diffusion against perfect competition. Fi-
nally, we give an FPTAS for the problem of maximizing the influence of
a single player when the underlying graph is a tree.

1 Introduction

Social networks are graphs of individuals and their relationships, such as friend-
ships, collaborations, or advice seeking relationships. In deciding whether to
adopt an innovation (such as a political idea or product), individuals will fre-
quently be influenced, explicitly or implicitly, by their social contacts. In order
to effectively employ viral marketing [1, 2], i.e., marketing via “word-of-mouth”
recommendations, it is thus essential for companies to identify “opinion lead-
ers” to target, in the hopes that influencing them will lead to a large cascade of
further recommendations. More formally, the influence maximization problem is
the following: Given a probabilistic model for influence, determine a set A of k
individuals yielding the largest expected cascade.1 The formalization of influence
maximization as an optimization problem is due to Domingos and Richardson
[1], who modeled influence by an arbitrary Markov random field, and gave heuris-
tics for maximization. The first provable approximation guarantees are given in
[3–5].

In this paper, we extend past work by focusing on the case when multiple
innovations are competing within a social network. This scenario will frequently
arise in the real world: multiple companies with comparable products will vie for

1 More realistic models considering different marketing actions which affect multiple
individuals can usually be reduced to the problem as described here (see [3]).



sales with competing word-of-mouth cascades; similarly, many innovations face
active opposition also spreading by word of mouth. We propose a natural gener-
alization of the independent cascade model [2] to multiple competing influences
(see Section 2 for details). Our model extends Hotelling’s model of competi-
tion [6], and is related to competitive facility location and Voronoi games [7, 8].
We first study second-mover strategies and equilibria of the resulting activation
game and show that:

Theorem 1. The last agent i to commit to a set Si for initial activation can
efficiently find a (1 − 1/e) approximation to the optimal Si.

Theorem 2. The price of competition of the game (resulting from lack of coor-
dination among the agents) is at most a factor of 2.

We analyze good first-mover strategies for the two-player game in Section 4,
and give exact algorithms for simple special cases. Finally, we give an FPTAS
for maximizing the influence of a single player on bidirected trees, even when
the edges in opposite directions have different probabilities. [3, 4] proved that the
general version of influence maximization is NP-complete, and we conjecture it
is so even for arborescences directed into a root.

2 Models and Preliminaries

The social network is represented as a directed graph G = (V,E). Following the
independent cascade model [2, 3], each edge e = (u, v) ∈ E has an activation
probability pe. Each node can be either inactive or active; in the latter case,
it is assigned a color denoting the influence for which it is active (intuitively,
the product that the node has adopted). To avoid tie-breaking for simultaneous
activation attempts by multiple neighbors, we augment the model by a notion
of activation time for each activation attempt. When node u becomes active at
time t, it attempts to activate each currently inactive neighbor v. If the activation
attempt from u on v succeeds, v will become active, of the same color as u, at time
t+Tuv, where the Tuv are independent and exponentially distributed continuous
random variables. Subsequently, v will try to activate inactive neighbors, and so
forth. Thus, a node always has the color of the first neighbor succeeding in
activating it.

In the influence maximization game, each of b players selects a set Si of at
most ki nodes. A node selected by multiple players will take the color of one
of the players uniformly at random. Then, with Si being active for influence i,
the process unfolds as described above until no new activations occur. Letting
T1, . . . , Tb be the active sets at that point, the goal of each player i is to maximize
E [|Ti|]. Player i is indifferent between strategies Si and S′

i if their expected gain
is the same. In particular, the game is thus not a zero-sum game. Simple examples
show that in general, this game has no pure strategy Nash Equilibria; however,
it does have mixed-strategy Nash Equilibria.



3 Best Response Strategies

In order to gain a better understanding of the influence maximization game, we
first focus on best response strategies for players.

Lemma 1. Suppose that the strategies Sj , j 6= i for other players are fixed.
Then, player i’s payoff E [|Ti| | S1, . . . , Sb] from the strategy Si is a monotone
and submodular function of Si.

Proof. We obtain a deterministic equivalent of the activation process by choos-
ing independently if each edge e = (u, v) will constitute a successful activation
attempt by u on v (a biased coin flip with probability pe), as well as the acti-
vation time Te, beforehand. Then, we consider running the (now deterministic)
activation process using these outcomes and delays.

If node u has color j, and activates node v successfully, we color the edge
(u, v) with color j. A path P is called a color-j path if all its edges have color
j. Then, a node u ends up colored with color j iff there is a color-j path from
some node in Sj to u.

Conditioned on any outcome of all random choices as well as all Sj , j 6= i,
the set of nodes reachable along color-i paths from Si is the union of all nodes
reachable from any one node of Si. Thus, if Si ⊆ S′

i, the set of nodes reach-
able from Si + v, but not from Si, is a superset of those reachable from S′

i + v,
but not from S′

i (by monotonicity). Thus, given fixed outcomes of all random
choices and Sj , j 6= i, the number of nodes reachable from Si is a monotone and
submodular function of Si. Being a non-negative linear combination of submod-
ular functions (with coefficients equal to the probabilities of the outcomes of the
random choices), the objective function of player i is thus also monotone and
submodular.

The above lemma implies that for the last player to commit to a strategy, the
greedy algorithm of iteratively adding a node with largest marginal gain is within
a factor (1−1/e) of the best response (see [3]), thus proving Theorem 1. Second,
as the expected total number of active nodes at the end is also a monotone
submodular function of S :=

⋃
j Sj , the game meets the requirements of a valid

utility system as defined by Vetta [10]. We can apply Theorem 3.4 of [10] to obtain
that the expected total number of nodes activated in any Nash Equilibrium is
at least half the number activated by the best solution with a single player
controlling all of the

∑
i bi initial activations. This proves Theorem 2.

4 First Mover Strategies

We now consider first mover strategies in a duopoly, with 2 players called “red”
and “blue”. The following variant of the competitive influence maximization
problem is motivated by its similarity both to the case of multiple disjoint di-
rected lines (discussed briefly below) and to a fair division problem: Given n
lines of lengths ℓ1, . . . , ℓn, the red player first gets to make any k cuts, creating



k + n pieces whose lengths sum up to the original lengths. The blue player picks
the k largest segments (“blue pieces”) and the red player gets the next-largest
min(n, k) segments (“red pieces”).

Assume for now that we know a “cutoff point” c such that all blue pieces have
size at least c, and all red pieces have size at most c. Let F (i, r, b, c) denote the
maximum total size of r red pieces in the ith line and G(i, r, b, c) the maximum
total size of r red pieces over the first i lines. Then, we obtain the following
recurrence relation, which turns into a dynamic program in the standard way.

G(i, r, b, c) = max
r′=0...r

max
b′=0...b

F (i, r′, b′(r′), c) + G(i − 1, r − r′, b − b′(r′), c)

The main issue is then to reduce the number of candidates for the cutoff point
c to a strongly polynomial number. The following lemma shows that we only need
to try out nk candidate values ℓi/j, i = 1, . . . , n, j = 1, . . . , k for c (retaining the
best solution found by the dynamic program), making the algorithm strongly
polynomial.

Lemma 2. The optimal solution cuts each line segment into equal-sized pieces.

Proof. First, we can remove unused line segments from the problem instance.
Second, partially used line segments can be converted to completely used line
segments by adding the unused part to an existing blue segment (if it exists) or
to an existing red segment (if no blue piece exists). The latter may entice the
blue player to take a red piece. But this frees up a formerly blue piece (of size
at least c) to be picked up by the red player.

W.l.o.g., all pieces of the same color on a line segment are of the same size. If
the optimal solution contains an unevenly cut line with red and blue pieces, we
increase the sizes of all red pieces and decrease the sizes of all blue pieces until
the line is cut evenly. As before, the red player’s gain cannot be reduced by the
blue player switching to a different piece, because any new piece the red player
may obtain after the blue player switches will have size at least c.

The above algorithm can be extended to deal with directed lines and even
outdirected arborescences. In the former case, the slight difference is that the
“leftmost” piece of any line is not available to the red player. These extensions
are deferred to the full version due to space constraints.

5 Influence Maximization on Bidirected Trees

While the single-player influence maximization problem is APX-hard in general
[3], special cases of graph structures are more amenable to approximation. Here,
we will give an FPTAS for the influence maximization problem for bi-directed
trees. (This FPTAS can be extended to bounded treewidth graphs with a signifi-
cant increase in complexity.) Given a target ε, we will give a 1−ε approximation
based on a combination of dynamic programming and rounding of probabilities.



For the subtree rooted at node v, let G(v, k, q+, q−) denote the expected
number of nodes that will be activated by an optimum strategy, provided that
(1) v is activated by its parent with probability at most q−, and (2) v has to be
activated by its subtree with probability at least q+.

Let v be a node of degree d with children v1, . . . vd. Then, for the respective
subproblems, we can choose arbitrary k1, . . . , kd, q+

1 , . . . , q+
d , q−1 , . . . , q−d , such

that (1)
∑

i ki = k, q+ ≤ 1−
∏

i(1−q+
i pvi,v) and q−i ≤ pv,vi

(1−(1−q−)
∏

j 6=i(1−

q+
j pvj ,v)) if v is selected, or (2)

∑
i ki = k − 1, q+ ≤ 1 and q−i ≤ pv,vi

if v is not
selected. If (1) or (2) is satisfied, we call the values consistent. For consistent
values, the optimum can be characterized as:

G(v, k, q+, q−) = max
(ki),(q

+

i
),(q−

i
)

m∑

i=1

G(vi, ki, q
+
i , q−i ) + 1 − (1 − q+)(1 − q−). (1)

As discussed above, the maximum is over both the case that v is selected, and
that it is not. It can be computed via a nested dynamic program over the values
of i. In this form, G(v, k, q+, q−) may have to be calculated for exponentially
many values of q+ and q−. To deal with this problem, we define δ = ε/n3,
and compute (and store) the values G(v, k, q+, q−) only for q+ and q− which
are multiples of δ between 0 and 1. The number of computed entries is then
polynomial in n and 1/ε. Let G′(v, k, q+, q−) denote the gain obtained by the
best consistent solution to the rounding version of the dynamic program, and
⌊q⌋δ the value of q rounded down to the nearest multiple of δ. Then, for the
rounding version, we have

Theorem 3. For all v, k, q+, q−, there exists a value r+ ≤ q+ with q+ − r+ ≤
δ|Tv|, such that G(v, k, q+, q−) − G′(v, k, r+, ⌊q−⌋δ) ≤ δ|Tv|

3, where |Tv| is the
number of nodes in the subtree rooted at v.

Applying the theorem at the root of the tree, we obtain that the rounding
dynamic program will find a solution differing from the optimum by at most an
additive δn3 ≤ ε ≤ ε · OPT, proving that the algorithm is an FPTAS.

Proof. We will prove the theorem by induction on the tree structure. It clearly
holds for all leaves, by choosing r+ = ⌊q+⌋δ. Let v be an internal node of
degree d, with children v1, . . . , vd. Let (ki), (q

+
i ), (q−i ) be the arguments for the

optimum subproblems of G(v, k, q+, q−). By induction hypothesis, applied to
each of the subtrees, there are values r+

i ≤ q+
i with q+

i − r+
i ≤ δ|Tvi

|, such that
G(vi, ki, q

+
i , q−i ) − G′(vi, ki, r

+
i , ⌊q−i ⌋δ) ≤ δ|Tvi

|3.
Define r+ := ⌊1 −

∏
i(1 − r+

i pvi,v)⌋δ, (or r+ = 1, if the optimum solution
included node v). By definition, r+ is consistent with the r+

i . Using Lemma 4
below and the inductive guarantee on the r+

i values, we obtain directly that
q+ − r+ ≤ δ|Tv| (where we used the fact that

∑
i |Tvi

| + 1 = |Tv|). Next, we
define r−i = ⌊pv,vi

(1 − (1 − ⌊q−⌋δ)
∏

j 6=i(1 − r+
j pvj ,v))⌋δ for all i. Again, the r−i

are consistent by definition, and by using the inductively guaranteed bounds on
q+
j − r+

j as well as Lemma 4, we obtain that q−i − r−i ≤ δ(|Tv| + 1) for all i.



Now, applying Lemma 3, we obtain that G′(vi, ki, r
+
i , q−i )−G′(vi, ki, r

+
i , r−i ) ≤

δ|Tvi
|(|Tv| + 1), for all i. In other words, because the input values to the sub-

problems did not need to be perturbed significantly to make the r−i consistent,
the value of the rounding dynamic program cannot have changed too much.
Combining these bounds with the inductive assumption for each subproblem,
we have:

G′(v, k, r+, ⌊q−⌋δ) ≥
∑

i G′(vi, ki, r
+
i , r−i ) + 1 − (1 − r+)(1 − ⌊q−⌋δ)

≥
∑

i(G
′(vi, ki, r

+
i , ⌊q−i ⌋δ) − δ|Tvi

|(|Tv| + 1))
+1 − (1 − q+ + δ|Tv|)(1 − q− + δ)

IH

≥
∑

i(G(vi, ki, q
+
i , q−i ) − δ(|Tvi

|3 + (|Tv| + 1)|Tvi
|))

+1 − (1 − q+)(1 − q−) − δ(1 + |Tv|)
≥ G(v, k, q+, q−) − δ|Tv|

3.

The following two lemmas are proved by induction; their proofs are deferred to
the full version due to space constraints.

Lemma 3. If r− ≤ q−, then G′(v, k, q+, q−)−G′(v, k, q+, r−) ≤ |Tv|(q
− − r−).

Lemma 4. For any a1, . . . , an and b1, . . . , bn,
∏n

i=1 ai −
∏n

i=1 bi =
∑n

i=1(ai − bi) ·
∏i−1

j=1 aj ·
∏n

j=i+1 bj
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Discrete And Computational Geometry 31 (2004) 125–138

9. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for
maximizing submodular set functions. Mathematical Programming 14 (1978) 265–
294

10. Vetta, A.: Nash equlibria in competitive societies with applications to facility
location, traffic routing and auctions. In: Proc. 43rd IEEE FOCS. (2002) 416–425


