
Lecture Notes on Fibonacci Heaps — CS 670

David Kempe

September 23, 2022

Fibonacci Heaps are a data structure for an asymptotically faster implementation of Prim’s MST algo-
rithm, and Dijkstra’s Shortest Paths algorithm. The data structure is designed to contain the nodes we are
currently considering for addition to the growing root component. Hence, we need it to support the following
operations:

1. insert(v, h): Insert an element v into the structure h (together with an associated value). In Prim’s
and Dijkstra’s algorithm, this element will be a node to which we have just discovered the first edge.

2. delete-min(h): Find the element with the smallest associated value in the structure h, return it, and
remove it from h. This is done when we choose the next node to include in the root component in
Dijkstra’s or Prim’s algorithm.

3. decrease(v,∆): Decrease the value associated with node v by ∆. This becomes necessary if we just
discovered a new (and cheaper) way of adding the node v. At that point, v is not yet in the component
including the root, but it may just have become a more attractive candidate for inclusion in the next
step.

In Dijkstra and Prim, each node is inserted and deleted once, hence we have a total of n insert and
delete-min operations. A decrease is always the result of looking at an edge, so there will be at most m
decrease operations. Our goal is to have the total running time be O(m+ n log n). This would require us
to implement decrease to run in O(1) time, and insert and delete-min in O(log n).

The standard way of achieving such runtime bounds would be to ensure that every single one of those
operations never takes more than O(1) resp. O(log n) steps. However, we do not know how to achieve that.
Every now and then, an operation will have to be expensive. What we would like to show, then, is that
expensive operations are rare, so that their effect “averages out”. This idea is called “amortized analysis”,
and we will see it in action below.

1 Cleaning up a Floor

Let us first start with a simple (albeit slightly contrived) example to illustrate the idea of amortized analysis.
Suppose we have two operations, drop and clean-up(t). The drop operation drops a piece of trash on the
floor (and takes one unit of time), while clean-up(t) cleans t pieces of trash from the floor (we assume that
t is no more than the actual number of pieces on the floor). clean-up(t) takes one time unit of time for
each of the t pieces, plus one extra unit to carry all of them to the trashcan, so it takes t+ 1 steps. We also
assume that we start with a clean floor.

Now, if we look at a clean-up operation in isolation, it may take very long — there may be a lot of trash
on the floor, and t may be large. But if that is so, we must have executed a lot of (fast) drop operations
previously, to accumulate that much trash. So how long can a sequence of d drop and c clean-up operations
take in total?

Let’s first look at a simpler version: we drop d items, and then we clean all of them up. The dropping
takes time 1 each, and the cleanup time d + 1. So it turns out that a single cleanup is expensive, but on

1

average, each operation costs 1
d+1

· (d · 1 + 1 · (d + 1)) = 2d+1
d+1

≤ 2 steps. Another way to think about it is
that we can attribute each extra step of cleaning up to one (easy) step of dropping something. A clean-up

operation cannot be expensive unless we had a lot of (cheap) drop operations preceding it. If we took one
step of clean-up, and arbitrarily claimed that it belonged to a preceding drop step, the total (and average)
would not change. So our goal would be to somehow spread out the cost for clean-up evenly among the
cheap drop operations.

How do we formalize this intuition, gained from one special case, into a more general analysis? Suppose
that instead of doing all this work ourselves, we paid someone to do it. For each drop operation, we paid
1, and for each clean-up(t) t+1 dollars. Since we know that each item may potentially have to be cleaned
up, we could pay him 2 for the dropping instead. Then, when time comes around to cleaning up, all the
picking up is already pre-paid, and we only have to pay 1 for the trip to the trashcan. So the total cost for
a sequence of d drop and c clean-up operations is at most 2d+ c dollars.

Exactly the same kind of accounting works if we do the work ourselves: we pretend that the drop

operation takes 2 time steps, to account for any subsequent clean-up we may do on this item. In the
terminology we will use later, we perform two units of work for drop, and attach one credit to the item. The
credit later pays for the picking up part. So the total number of steps taken is at most 2d + c. Of course,
some of these steps may be unused: for instance, if we never execute clean-up, the total time for d drops
was actually d, whereas we counted 2d. But at least, we get an upper bound of O(d).

2 Binomial Heaps

We will obtain our desired Fibonacci Heaps by starting with a somewhat simpler data structure, called
Binomial Heaps, and then modifying them. Binomial Heaps will support the insert and delete-min

operations, and we will later add the decrease functionality.

2.1 Binomial Trees

Binomial Heaps are collections of Binomial Trees1. Binomial Trees are denoted by Bk, and defined induc-
tively as follows: B0 is the tree consisting of a single node, and no edges. Bk+1 is the tree consisting of a
root node r of degree k+ 1. One of its children is the root of a B0, one is the root of a B1, one the root of a
B2, and so forth, up to Bk. For a root r, its rank rank(r) is its number of children. The rank rank(T) of a
tree T is the rank of the root node, so that rank(Bk) = k.

It is not too difficult to observe that there is an alternate definition of binomial heaps leading to the same
outcome. Bk+1 can be obtained by taking two Bk trees, and connecting their roots with an edge. This leads
us to two simple, but very useful, observations.

Proposition 1 Two trees Bk can be merged into one Bk+1 in constant time. We call this the merge

operation.

Proof. All we need to do is designate one as the child, and have its root point to the other root as a parent,
as well as adding a pointer from the parent to its newly acquired child.

Proposition 2 A Bk tree contains exactly 2k nodes.

Proof. By induction on k.

1
This is not the same as a binary tree.

2

2.2 Binomial Heaps — a basic version

A Binomial Heap h is a collection of Binomial trees, such that for each rank k, at most one tree Bk is
contained in h. In addition, and very crucially, we require that each of the trees in h satisfy the heap
property : this means that the value associated with a node v is no larger than the value associated with any
of its children. While we will relax (in other words, violate) many other properties, we will always strictly
maintain the heap property.

We will support three operations on Binomial Heaps:

1. insert(v, h): insert an item, as before.

2. delete-min(h): return and delete the minimum item in the tree.

3. meld(h, h′): take two heaps and combine them into one. This is used as a subroutine for the imple-
mentation of the other operations.

Our goal is to implement the insert operation in time O(1), and the delete-min operation in time
O(log n).

2.2.1 meld

Let us start with the meld(h, h′) operation. It would be easiest to implement if we could just take all the
trees from h and h′, and combine them into one new heap. However, that may violate the property that the
resulting heap may contain at most one tree of each rank, as both h and h′ may contain trees of the same
rank k. When h and h′ do contain trees of the same rank k, we can apply the merge operation mentioned
above: make one of them a child of the other, thus generating a tree of rank k + 1. Of course, we make the
one with larger value the child of the other, in order to maintain the heap property.

We iterate this while there are still trees of the same rank (including the newly generated ones). How
many merge operations does this take? Each merge takes two trees, and replaces them with one, so the
number of trees total decreases by 1. Hence, if we start with |h| + |h′| trees, it takes at most that many
steps. This brings us to the next question: how large can |h| (or |h′|) be? This is answered by the following
lemma:

Lemma 3 A Binomial Heap (over an n-element universe) contains at most O(log n) trees.

Proof. A Binomial Heap contains at most one tree of rank 0, one of rank 1, one of rank 2, What is
the highest rank any tree could have? No tree can contain more than n nodes, as there is only a total of n
elements to insert into trees. Because a tree of rank k contains 2k nodes (by Proposition 2), a tree of rank
at least 1 + log n would contain 21+logn = 2n nodes, more than there are. So there are no trees of rank
exceeding log n, so the total number of trees in a heap is at most 1 + log n = O(log n).

Now, as both heaps have at most O(log n) trees, the meld operation uses at most O(log n) merge steps. If
we start with rank 0, and look at the trees in increasing order of rank, it can be seen that the implementation
actually does take O(log n) time.

2.2.2 insert

The basic implementation of the insert operation is quite simple. To insert a new element v, we just create
a B0 tree containing only v. Unluckily, the binomial heap h may already contain a B0, so we can’t just add
the new one — it would violate the condition that we have at most one tree of each rank. Formally, we
create a new heap h′, consisting of just the new B0 tree, and meld it with h.

The creation of a new tree and heap takes O(1) time. In the worst case, the subsequent meld operation
takes O(log n), so the implementation takes O(log n).

3

2.2.3 delete-min

The delete-min(h) operation is supposed to find and delete the element with the smallest associated value.
In order to find it, it suffices to check the roots of all trees in h. That is because each tree satisfies the
heap condition, so each tree’s smallest element is in the tree’s root. The smallest overall is then the smallest
element among all the candidates in the roots. By Lemma 3, there are at most O(log n) trees in the heap,
so the minimum can be found in O(log n) steps.

After that, we remove the root that contained the minimum. In so doing, we generate a new heap h′,
consisting of all the subtrees that were rooted at that node. If the tree was a Bk, we generate a B0, a B1, and
so forth, up to a Bk−1. In order to reinstate the heap property afterwards, we need to meld the new heap
h′ with the old heap h. The melding takes at most O(log n) steps as well. So the total time for delete-min
is also O(log n).

2.3 Improving the running time

While we achieved our goal of a running time of O(log n) for delete-min, we fell short of our goal of O(1)
for insert. The main reason is that we invoked the meld operation as a subroutine, which takes O(log n)
steps. Really, there isn’t that much we can do to speed up meld beyond that, as even checking if any merges
are necessary takes Ω(log n) steps. So we will have to refrain from invoking meld as part of insert. If we
don’t invoke meld, we actually achieve the running time of O(1) for insert.

But wait! Then, as we generate new trees and add them to the heap, there may be multiple trees of
the same rank. That in turn will make delete-min take more time, as it needs to check the roots of all
trees to find the minimum. To keep the search for the minimum element within O(log n), we need to ensure
that before the search starts, we reinstate the property that there is at most one tree of each rank. In other
words, we will need to call a variant of the meld operation before doing the search. We call it clean-up(h):
it takes a “violated binomial heap” — one in which there may be multiple trees of the same rank — and, in
the same way as meld, merges trees of the same rank to reduce the number of trees.

So how long does this new clean-up operation take? It certainly depends on the number of trees in the
“violated heap” h: if there are |h| trees before the clean-up operation, it may take time Ω(h). In other
words, if we had a lot of insert operations (say, n/2), generating n/2 1-node trees, then clean-up will
take n/2 steps. So in the worst case, the running time of clean-up will be quite bad. However, as with
our previous example of clean-up in Section 1, such a bad running time must be caused by a lot of cheap
operations preceding the clean-up operation, so the average time per operation is not that bad. In other
words, it is time to look for an amortization argument.

Here, the argument is not quite as easy, as we don’t just drop or pick up items: trees are merged, and
fall apart again, and so forth. But the basic idea is the same. Here, we will do extra work (or pay extra
money) during some operations, to ensure that each tree has a credit. This credit can then be used when
two trees are merged, to pay for the cost of the merge operation. We will call this credit the merge credit,
and design our analysis so that it ensures the following key invariant:

(*) At each time, each tree has a merge credit (which is associated with its root).

We need to verify how to maintain this invariant across all operations that we do on the data structure:

1. insert: when a new tree is created via an insert operation, we just do one more unit of work, which
will be stored as a credit with the new tree. The amount of work done is still O(1) (we don’t execute
meld here any more).

2. merge: the merge operation takes two trees Bk, and combines them into one Bk+1. By the invariant,
both trees have a credit before the operation. We use one of the credits to pay for the merge, while the
second one stays with the resulting Bk+1. Hence, we can actually execute merge for free (it is already
paid for), and the invariant holds afterwards.

4

3. delete-min: the only other way in which new trees are generated is by a delete-min operation. This
removes the root of some Bk, and generates k new trees B0, B1, . . . , Bk−1. We can ensure that each
of these new trees has a merge credit by doing one extra unit of work for each of them, a total of
O(log n) extra work. As delete-min was allowed to take time O(log n) anyway, this does not make it
asymptotically slower.

Hence, we have given an accounting scheme that maintains the credit invariant (*). In this accounting
scheme, insert takes amortized time O(1), merge can be done for free, and delete-min takes time O(log n).
Using the free merge implementation, meld runs in time O(log n), regardless of how many trees are in the
“violated heap”. (Notice that the log n is necessary just to check if any merge operations need to be done.)
After the meld operation, delete-min runs in time O(log n). So, overall, the amortized time for insert is
O(1), and for delete-min, it is O(log n).

To iterate once more the important point about amortized analysis, this does not mean that any one
of these operations takes that little time, but it does mean that a sequence of c insert and d delete-min

operations takes time O(c+ d log n).

3 Fibonacci Heaps

To get a data structure that supports all the operations we want for Prim’s and Dijkstra’s algorithm, we still
need to add a decrease operation that runs in (amortized) time O(1). Recall that decrease(v,∆) decreases
the value associated with node v by ∆.

3.1 Implementation of decrease

A first approach would be simply to go ahead and change the value. But that may violate the really crucial
heap property: by decreasing the value for v, its value may now be smaller than its parent’s. A first approach
to remedy that would be to swap v with its parent. But then, its new value may also be smaller than its
grandparent’s, so a further swap is necessary, and so forth. In the extreme case, it may need to be swapped
all the way to the root. Since the height of a tree may be as much as Ω(log n), this could take Ω(log n) steps,
which is more than the O(1) we are aiming for. Also, it doesn’t seem like an amortized analysis will help us
here, as the sequence of decreases (i.e., ∆ values) may be such that all swaps will really be necessary.

An alternate approach is the following: when v’s value decreases, we remove it from the tree, together
with the entire subtree rooted at v (so we end up with two trees afterwards). Since v is now the root of its
own tree, it certainly won’t violate the heap property. However, something else may go wrong now. If we
have a tree Bk with root r, and all of r’s children lose their children in this way, the resulting tree has only
k + 1 nodes in the end. In other words, Proposition 2 does not hold any more, and it was a crucial part in
proving Lemma 3. In fact, a heap can contain trees up to rank Ω(n) in that case, in which case delete-min
would take time Ω(n) just to search all of the roots. In order to keep the running time of delete-min small
enough (O(log n)), we need to make sure that there are no trees of rank exceeding O(log n). And a good
way to ensure that is to make sure that a tree of rank k contains at least ck nodes, for some constant c > 1.

The upshot of the preceding paragraph is that we can’t just delete subtrees arbitrarily, but rather have
to stop at some point. The specific rule we use is the following: if we decrease the value for some node v,
we let p be the parent of v. We always delete v and its subtree, making them a new tree. If no other child
of p has been removed, then that’s all we do. On the other hand, if p has already lost a child, then we also
remove p itself and its remaining subtree now. Of course, p may be the second child of its parent p′ that is
removed. In that case, we also remove p′, and so forth.

3.2 Analysis of decrease

How long does the new decrease operation take? In the worst case, we will remove all the ancestors of
the node v, which would mean that we do Ω(log n) removals, and create as many new trees. So the new
decrease implementation still could take time Ω(log n). So what have we gained over the first idea?

5

The advantage is that in order for decrease to cut a lot of trees, each of the nodes along the way has
to already have lost one of its children. And the removal of the first child is cheap. So in order to have
an expensive operation, of cost c, we first had to execute c cheap operations of cost O(1). So it’s time for
another amortization argument.

We introduce a second type of credit, a tree removal credit. When a node v is decreased (and removed)
as the first child of its parent p, we spend an additional unit of work to give p a removal credit. Later, when
another child v′ of p is decreased and removed, we use the credit to pay for the removal of p itself. If the
parent p′ of p is also removed, then it too must have a removal credit to pay for the removal, so we will be
all set. That way, we actually implement the decrease operation in amortized O(1) time.

One little subtlety: the decrease operation, by removing a subtree, can generate an additional new tree.
That tree also needs a merge credit, to maintain the invariant (*). Again, whenever we actually remove a
tree, we can do two more units of work, to give the new tree its merge credit, and have a merge credit ready
for the parent if it becomes removed. This still leaves the amortized time for the decrease operation at
O(1).

3.3 Size of a tree in a Fibonacci Heap

Recall again our goal with the “delete one child but not two” rule: the deletion was necessary to maintain
the heap property — on the other hand, we did not want to delete too many nodes from a tree, as we still
wanted a tree of rank k to have ck nodes, for some constant c > 1. The reason for wanting this property is
so that the searching part of delete-min should take only O(log n) steps.

So did we succeed? What is the smallest number of nodes that could be in a tree of rank k? Let us call
this number Sk, and try to derive a characterization. S0 = 1, as a node with no children still is one node.
S1 = 2, as a root r with one child v still is a tree of size 2; v had no children to begin with, and has not lost
any. Now let us look at a root r with k children. Label the children v0, v1, . . . , vk−1, by non-decreasing rank.
Because the meld operation ensures that there is at most one child of each rank i, prior to removals, each
node vi had rank at least i. (The rank could be larger, because some ranks may not have been represented.)
Because each vi had at most one child removed, its rank is at least i− 1, except for v0, which still has rank
at least 0. Thus, by definition, the subtree rooted at vi must still contain at least Si−1 nodes for i > 0, and
S0 = 1 node for i = 0. Thus, the total number of nodes in a tree rooted at r is at least

Sk = 1 + S0 + S0 + S1 + S2 + . . .+ Sk−3 + Sk−2

(1 for the node r itself). A completely identical argument about a node r of rank k − 1 gives

Sk−1 = 1 + S0 + S0 + S1 + S2 + . . .+ Sk−4 + Sk−3

By subtracting the second equation from the first, we find that Sk − Sk−1 = Sk−2, or Sk = Sk−1 + Sk−2.
Except for the fact that we start with S1 = 2 instead of S1 = 1, this is exactly the sequence of Fibonacci
numbers.

It still remains to show that the Fibonacci numbers actually grow exponentially fast in k. To get a good
guess as to what the constant c would be, assume for now that we are more ambitious, and want to show
that Sk = ck for some c > 1 (whereas in reality, all we want is that Sk ≥ ck). What would that constant c
be? If it is to satisfy the recurrence Sk = Sk−1 + Sk−2, it certainly would have to satisfy ck = ck−1 + ck−2.
Now, dividing this by ck−2 gives the necessary condition that c2 = c+ 1. By applying the formula that we
learned in middle school about solving quadratic equations, we find that the only positive candidate would

be the golden ratio c = 1+
√
5

2
. So let us try and show that for this particular c, we have that Sk ≥ ck (they

are not equal, as the value S1 at k = 1 is too big).

Lemma 4 Sk ≥ ck, where c = 1+
√
5

2
is the solution to the equation c2 = c+ 1.

Proof. We prove this claim by induction on k. For k = 0, we have that S0 = 1 = c0. For k = 1, this does

not hold with equality: S1 = 2 ≥ 1+
√
5

2
= c1.

6

For the inductive step to k + 1, we know that Sk+1 = Sk + Sk−1. By induction hypothesis (applied to k
and k − 1), Sk ≥ ck and Sk−1 ≥ ck−1. Thus,

Sk+1 ≥ ck + ck−1 = ck−1 · (c+ 1) = ck−1 · c2 = ck+1.

Hence, the claim also holds for k + 1.

The lemma thus shows that the number of nodes in any one tree in the Fibonacci Heap is still exponential
in the tree’s rank. Hence, the ranks can only range from 0 to O(log n), and after the clean-up operation,
the delete-min operation only needs to check O(log n) roots, and hence terminates in O(log n) steps.

Putting all of this together, Fibonacci Heaps are a data structure that support insert in time O(1),
delete-min in amortized time O(log n), and decrease in amortized time O(1). In other words, a sequence
of a insert, b delete-min and c decrease operations always takes time O(a + c + b log n). In particular,
the operations in Prim’s or Dijkstra’s algorithm take time O(m+ n+ n log n) = O(m+ n log n).

7

